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Ever since the mid-seventies, researchers have recognized that capturing knowledge is the key to

building large and powerful AI systems. In the years since, we have also found that representing

knowledge is difficult and time consuming. In spite of the tools developed to help with knowledge

acquisition, knowledge base construction remains one of the major costs in building an AI system:

For almost every system we build, a new knowledge base must be constructed from scratch. As a

result, most systems remain small to medium in size. Even if we build several systems within a general

area, such as medicine or electronics diagnosis, significant portions of the domain must be

represented for every system we create.

The cost of this duplication of effort has been high and will become prohibitive as we attempt to

build larger and larger systems. To overcome this barrier we must find ways of preserving existing

knowledge bases and of sharing, reusing, and building on them.

This report describes the efforts undertaken over the last two years under the NASA grant NCC 2-

719 to identify the issues underlying the current difficulties in sharing and reuse, and a community

wide initiative to overcome them. First, we discuss four bottlenecks to sharing and reuse, present a

vision of a future in which these bottlenecks have been ameliorated, and describe the efforts of the

initiative's four working groups to address these bottlenecks. We then address the supporting

technology and infrastructure that is critical to enabling the vision of the future. Finally, we consider

topics of longer-range interest by reviewing some of the research issues raised by our vision.

Sharing and Reuse of Knowledge

There are many senses in which the work that went into creating a knowledge-based system can be

shared and reused. Rather than mandating one particular sense, the approach we have taken in this

project seeks to support several of them. One mode is to reuse is through the exchange of techniques

and detailed analysis of a domain. That is, the content of some knowledge-base or an implemented

algorithm is not directly used, but the approach behind it is communicated in a manner that facilitates

its reimplementation. Another mode of reuse is through the inclusion of an existing knowledge-base

into a new system. That is, the content of some module is copied into another at design time and

merged (possibly after extension or revision) into the new system. A third mode is through the run-

time communication of knowledge, data or services. That is, one module invokes another either as a

procedure from a function library or as a collaborated agent (specialist) in the problem-solving

activity.
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These modes of reuse do not work particularly smoothly today. Explaining how to reproduce a

technique often requires communicating subtle issues that are more easily expressed formally;

whether stated formally or in natural language, the explanations require shared understanding of the

intended interpretations of terms. The reuse of a knowledge-base is only feasible to the extent that

their model of the world is compatible with the intended new use. The reuse of external agents'

knowledge or service is feasible only to the extent that we understand what requests the agent are

prepared to accept. These difficulties in sharing and reuse and possible approaches to resolving them

were studied at a 3 day workshop involving 40 top scientists in artificial intelligence, organized by ISI

(and supported by DARPA, NSF, and industry).

Technical analyses of knowledge representation technology indicated four key impediments and four

complementary areas in which development of common, agreed-upon conventions would enhance

leverage between individual research efforts. The four areas of impediments are: (1) heterogeneous

representations, (2) multiple dialects within language families, (3) lack of common conventions for

communication among intelligent agents, and (4) model "mismatch" at the knowledge level. The

proposed approaches to addressing each of these problem are: (1) mechanisms for translation

between knowledge bases represented in different languages; (2) common versions of languages and

reasoning modules within families of representational paradigm; (3) protocols for communication

between separate knowledge-based modules, as well as between knowledge-based systems and

databases; and, (4) libraries of "'ontoiogies," i.e., pre-fabricated foundations for application-specific

knowledge bases in a particular topic area.

To further develop and refine the solutions proposed, develop conventions, and to test the solutions in

implemented systems, Working groups (comprised of researchers from the DARPA AI community

and other academic and industry volunteers) have been established for each of these four areas, and

are developing draft specifications which are circulated for review both within the working groups

and among the project participants at ISI. The specifications are fed back to various collaborating

DARPA projects which are building relevant technology, so that their work can move toward

providing preliminary implementations of the specifications. Under the current grant, ISI is

responsible for supporting and coordinating the activities of these groups, and disseminating the

result of these activities to the broader research community and potential users.

In the following sections we describe the impediments and the results of the working groups.

The impediments to knowledge sharing

Impediment 1. Heterogeneous Representations: There are a wide variety of approaches to

knowledge representation, and knowledge that is expressed in one formalism cannot directly be

incorporated into another formalism. However, this diversity is inevitable--the choice of one form of

knowledge representation over another can have a big impact on a system's performance. There is no

single knowledge representation that is best for all problems, nor is there likely to be one. Thus, in

many cases, sharing and reusing knowledge will involve translating from one representation to

another. Currently, the only way to do this translating is by manually recoding knowledge from one

representation to another. We need tools that can help automate the translation process.

Impediment 2. Dialects within Language Families: Even within a single family of knowledge

representation formalisms (for example, the KL-One family), it can be difficult to share knowledge
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across systems if the knowledge has been encoded in different dialects. Some of the differences

between dialects are substantive, but many involve arbitrary and inconsequential differences in syntax

and semantics. All such differences, substantive or trivial, impede sharing. It is important to eliminate

unnecessary differences at this level.

Impediment 3. Lack of Communication Conventions: Knowledge sharing does not necessarily

require a merger of knowledge bases. If separate systems can communicate with one another, they

can benefit from each other's knowledge without sharing a common knowledge base. Unfortunately,

this approach is not generally feasible for today's systems because we lack an agreed-on protocol

specifying how systems are to query each other and in what form answers are to be delivered.

Similarly, we lack standard protocols that would provide interoperability between knowledge

representation systems and other, conventional software, such as database management systems.

Impediment 4. Model Mismatches at the Knowledge Level: Finally, even if the language-level

problems previously described are resolved, it can still be difficult to combine two knowledge bases

or establish effective communications between them. These remaining barriers arise when different

primitive terms are used to organize them; that is, if they lack shared vocabulary and domain

terminology. For example, the type hierarchy of one knowledge base might split the concept Object

into Physical-Object and Abstract-Object, but another might decompose Object into Decomposable-

Object, Nondecomposable-Object, Conscious-Being, and Non-Conscious-Thing. The absence of

knowledge about the relationship between the two sets of terms makes it difficult to reconcile them.

Sometimes these differences reflect differences in the intended purposes of the knowledge bases. At

other times, these differences are just arbitrary (for example, different knowledge bases use Isa, Isa-

kind-of, Subsumes, AKO, or Parent relations, although their real intent is the same). If we could

develop shared sets of explicitly defined terminology, sometimes called ontologies, we could begin to

remove some of the arbitrary differences at the knowledge level. Furthermore, shared ontologies

could provide a basis for packaging knowledge modules--describing the contents or services that are

offered and their ontological commitments in a composable, reusable form.

The Knowledge-Sharing Effort

The desire to collaborate through knowledge sharing and reuse has arisen within a segment of the

broad knowledge representation community that is interested in scaling up to larger systems and that

views the sharing and reuse of knowledge bases as a means to this end. Closely related to this effort is

a concern for building embedded systems in which knowledge representation systems support certain

functions rather than act as ends in themselves.

In particular, our goal is to support researchers in areas requiring systems bigger than a single

person can build. These areas include engineering and design domains, logistics and planning

domains, and various integrated modality areas (for example, multimedia interfaces). Researchers

working on such topics need large knowledge bases that model complex objects; because these

models drive complex systems, they cannot be skeletons. Putting together much larger systems, of

which various stand-alone systems being built today are just components, is an interesting challenge.

The creation of such knowledge resources requires community wide effort. This effort engenders a

need for agreed-on conventions to enable us to build pieces that fit together. Eventually, in pursuing

the goal of large, shared knowledge bases as part of a nationwide information infrastructure, these
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conventions might become objects of study for the definition of more formal standards. Currently,

however, the conventions are intended to support experiments in knowledge sharing among interested

parties.

In the next section describes the activities of our four working groups on these foundation-laying

activities. For each group, we summarize the problem being addressed, the approach being taken, and

the outcomes sought.

Interlingua

The Interlingua Working Group is headed by Richard Fikes and Mike Genesereth, both of Stanford

University.

Problem Formulation. The Interlingua Working Group focuses on the problems posed by the

heterogeneity of knowledge representation languages. Specifically, to interchange knowledge among

disparate programs (written by different programmers, at different times, in different languages),

effective means need to be developed for translating knowledge bases from one specialized

representation language into another. The goal of this group is to specify a language for

communicating knowledge between computer programs (as opposed to a language for the internal

representation of knowledge within computer programs). This language needs

(1) an agreed-on declarative semantics that is independent of any given interpreter,

(2) sufficient expressive power to represent the declarative knowledge contained in typical

application system knowledge bases, and

(3) structure that enables semiautomatic translation into and out of typical representation

languages.

Approach. This group is specifying a language (KIF [knowledge interchange format]) that is a form

of predicate calculus extended to include facilities for defining terms, representing knowledge about

knowledge, reifying functions and relations, specifying sets, and encoding commonly used

nonmonotonic reasoning policies. The group is also conducting knowledge-interchange experiments

to substantially test the viability and adequacy of the language. The experiments focus on developing

and testing a methodology for semiautomatic translation to and from typical representation

languages and the use of the interchange format as an intermodule communication language to

facilitate interoperability.

Outcomes. The specification for interlingua will evolve in a set of layers. The innermost layer will be

a core, analogous to the primitives in Lisp, providing basic representational and language extension

functions. The next layer will provide idioms and extensions that make the language more usable,

analogous to the set of functions provided by Common Lisp. This working group will be responsible

for developing these specifications. Its output will be (1) a living document containing the current

KIF specification, describing open issues, and presenting current proposals for modification and (2) a

corpus of documented microexamples, using fragments of knowledge bases to illustrate how they

translate into KIF and to point out open issues.
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dialects of the KL-One family of languages support KRSS standard. A copy of the specification is

included as Appendix C.

External Interfaces

The External Interfaces Working Group, cochaired by Tim Finin of the Unisys Center for Advanced

Information Technology and Gio Wiederhold of Stanford University, focuses on interfaces that

provide interoperability between a knowledge representation system and other software systems.

Problem Formulation. The time is ending when an intelligent system can exist as a single,

monolithic program that provides all the functions necessary to do a complex task. Intelligent

systems will be used and deployed in environments that require them to interact with a complex of

other software components. These components will include conventional software modules, operating

system functions, and database servers as well as other intelligent agents. There is a strong need to

develop standard interface modules and protocols to make it easier to achieve this interoperability.

The working group is concerned with three aspects of this problem: providing interoperability with

other intelligent agents, conventional (for example, relational) database management systems, and

object-oriented database systems.

Approach. To provide run-time interoperability between knowledge representation systems, we need

a language or protocol that allows one system to pose queries or provide data to another. The group

has begun the specification of such a language, KQML. The intent is that KQML will be to

knowledge representation systems what sql has become to database management systems--a high-

level, portable protocol for which all systems will provide interfaces. The current specification is

organized as a protocol stack in which the lowest information-conveying layer is based on the

interlingua. Higher layers in this stack provide for modality (for example, assert, retract, query),

transmission (for example, the specification of the recipient agent or agents), and complex

transactions (for example, the efficient transmission of a block of data).

The integration of ai and database management system technologies promises to play a significant

role in shaping the future of computing. As noted by Brodie (1988), this integration is crucial not

only for next-generation computing but also for the continued development of database management

system technology and the effective application of much of ai technology. The need exists for (1)

access to large amounts of existing shared data for knowledge processing, (2) the efficient

management of data as well as knowledge, and (3) the intelligent processing of data. The working

group is studying the many existing interfaces between knowledge representation systems and

relational databases (for example, Mckay, Finin, and O'Hare [1990]) and is attempting to develop

specifications for a common one. The primary issues here are the various ways in which the data in

the databases can best be mapped into the knowledge representation objects.

The third task that the group is looking at is providing interfaces between knowledge representation

systems and object-oriented databases. The goal here is to be able to use an object-oriented database

as a substrate under the knowledge representation system to provide a persistent object store for

knowledge base objects. This work is exploratory, but the potential benefits in the long run are

significant. They include (1) building and managing knowledge bases much larger than the current

technology will support and (2) providing controls for transactions and concurrent access to

knowledge bases at an object level.
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Outcomes. The External Interfaces Working Group is concentrating on the development of the

KQML protocol as its first goal. It hopes that an early implementation will be used to help build test

beds for several distributed, cooperative demonstration systems. With regard to database interfaces,

several working group members are attempting to integrate existing models for interfaces between

knowledge representation systems and relational databases and to produce a specification of a

common one. The working group is also planning an experiment in which a simple interface will be

built to allow an existing object-oriented database to be used as a substrate under one of the

representation systems being investigated by the KRSS working group. A draft specification of the

KQML protocol is included in Appendix D. An on-line version of the specification and related

publications can be accessed via the web from knowledge-sharing home page

(http://www.isi.edu/isd/KRSharing/).

Shared, Reusable Knowledge Bases

The Shared, Reusable Knowledge Bases Group is headed by Tom Gruber of Stanford University and

Marry Tenenbaum of EITech, Inc.

Problem Formulation. This group is working on mechanisms to enable the development of libraries

of shareable knowledge modules and the reuse of their knowledge-level contents. Today's

knowledge bases are structured as monolithic networks of highly interconnected symbols, designed

for specific tasks in narrow domains. As a result, it is difficult to adapt existing knowledge bases to

new uses or even to identify the shareable contents. To enable the accumulation of shareable

knowledge and the use of this knowledge by multiple systems, we need a means for designing

composable modules of knowledge. The working group is chartered to identify the barriers to the

building and use of shared knowledge modules, characterize potential approaches to overcoming

these barriers, and conduct experiments exploring mechanisms for knowledge sharing.

Approach. The working group supports three kinds of activity. One is the identification of

important research issues for knowledge sharing, including problems of methodology (for example,

multidisciplinary, collaborative knowledge base design) as well as engineering (for example,

scalability, shareability). A second activity is the development of ontologies that define terminology

used to represent bodies of shareable knowledge. The task includes (I) identifying bodies of

knowledge worth the effort to formally represent and make shareable and (2) defining coherent sets

of terms that characterize the ontological commitments and representational choices for modeling

these bodies of knowledge. A third type of working group activity is the coordination of

collaborative experiments in knowledge sharing in which multiple research groups attempt to share

and use each other's knowledge bases (for example, libraries of device models). Some experiments

will evaluate the use of ontologies as a mechanism for sharing (that is, for modularity and

composability of knowledge modules and the specification of their contents).

Outcomes. To these ends, the working group is concentrating on three objectives. The first is a

survey of the state of the art in research on knowledge sharing and reuse, which identifies the

techniques currently being explored and recommends research on the critical problems to be solved.

A second outcome is a set of results from the collaborative experiments on knowledge sharing,

including the ontologies used for each experiment and lessons learned about tools and

methodologies for developing them. An immediate subgoal for this outcome is to develop a

7
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mechanism for representing these ontologies in portable form, building on the work of the other

three working groups. The third, more long-term objective is to develop a suite of exemplary shared

ontologies and the knowledge bases using them.

The ontology working group has developed Ontolingua: a language for describing sharable

ontologies, and a libraries of foundational ontologies. Under separate funding from DARPA, the

Stanford ontology group maintains an ontology library containing ontologies developed by the

knowledge sharing effort. These ontologies, relevant publications and the Ontolingua system can be

accessed over the web through the Stanford Knowledge System Laboratory home page. (http://www-

ksl.stanford.edu/).

Dissemination

One of the key objectives of this project is to raise the awareness in the research and application

community to the need for sharing and reuse, as well as to make them aware of the results produced

by the DARPA knowledge sharing effort. Towards this end, ISI has organized a number of panels at

major conferences, publications, and supported talks by researchers. A few of the major activities are

listed below:

• Plenary session on Knowledge Sharing at the International conference on Knowledge

Representation and Reasoning, 1991, Cambridge, MA

• Lead article in AAAI Magazine on The DARPA Knowledge Sharing Effort (see Appendix A)

• Invited talk by Ramesh Patti at the International conference on Knowledge Representation and

Reasoning, 1992 (see Appendix B)

In addition many of the researchers involved in this effort (not funded by the grant) have published

papers related to these activities.

Conclusion

Attempting to move beyond the capabilities of current knowledge-based systems mandates

knowledge bases that are substantially larger than those we have today. However, representing and

acquiring knowledge is a difficult and time-consuming task. Knowledge-acquisition tools and current

development methodologies will not make this problem go away because the root of the problem is

that knowledge is inherently complex and the task of capturing it is correspondingly complex. Thus,

we cannot afford to waste whatever knowledge we do succeed in acquiring. We will be hard pressed to

make knowledge bases much bigger than we have today if we continue to start from scratch each time

we construct a new system. Building qualitatively bigger knowledge-based systems will be possible

only when we are able to share our knowledge and build on each other's labor and experience.
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Articles

Ever since the mid-

seventies, researchers

have recognized that

capturing knowledge

is the key to building

large and powerful a!

systems. In the years

since, we have also

found that represent-

ing knowledge is

difficult and time

consuming. Although

we have developed

tools to help with

knowledge acquisi-

tion, knowledge base

construction remains

one of the major

costs in building an

AI system: For almost

every system we build,

a new knowledge base

must be constructed

from scratch. As a

result, most systems

remain small to medium in size. Even if we

build several systems within a general area,

such as medicine or electronics diagnosis, sig-

nificant portions of the domain must be

rerepresented for every system we create.

The cost of this duplication of effort has

been high and will become prohibitive as we

attempt to build larger and larger systems. To
overcome this barrier and advance the state

of the art, we must find ways of preserving

existing knowledge bases and of sharing,

reusing, and building on them.

This article describes both near- and long-

term issues underlying an initiative to address

these concerns. First, we discuss four bottle-

necks to sharing and reuse, present a vision
of a future in which these bottlenecks have

been ameliorated, and touch on the efforts of

the initiative's four working groups to address

these bottlenecks. We then elaborate on the

vision by describing the model it implies for

how knowledge bases and knowledge-based

systems could be structured and developed.

This model involves both infrastructure and

supporting technology. The supporting tech-

nology is the topic of our near-term interest

because it is critical to enabling the infras-

tructure. Therefore, we return to discussing

the efforts of the four working groups of our.

initiative, focusing on the enabling technology

that they are working to define. Finally, we

consider topics of longer-range interest by

reviewing some of the research issues raised

by our vision.
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Sharing and
Reuse

There are many
senses in which the

work that went into

creating a knowl-

edge-based system
can be shared and

reused. Rather than

mandating one par-

ticular sense, the

model described in

this article seeks to

support several of
them. One mode of

reuse is through the

exchange of tech-

niques. That is, the

content of some

module from the

library is not direct-

ly used, but the

approach behind it

is communicated in

a manner that facilitates its reimplementa-

tion. Another mode of reuse is through the

inclusion of source specifications. That is, the

content of some module is copied into anoth-

er at design time and compiled (possibly after

extension or revision) into the new compo-

nent. A third mode is through the run-time

invocation of external modules or services.

That is, one module invokes another either

as a procedure from a function library or

through the maintenance of some kind of

client-server relationship between the two

(Finin and Fritzson 1989).

These modes of reuse do not work particu-

larly smoothly today. Explaining how to

reproduce a technique often requires commu-

nicating subtle issues that are more easily

expressed formally; whether stated formally

or in natural language, the explanations

require shared understanding of the intended

interpretations of terms. The reuse of source

specifications is only feasible to the extent

that their model of the world is compatible
with the intended new use. The reuse of

external modules is feasible only to the

extent that we understand what requests the

modules are prepared to accept. Let us con-

sider these complexities in more detail by

reviewing four critical impediments to shar-

ing and reuse.

Impediment 1. Heterogeneous Represen-

tations: There are a wide variety of approaches

to knowledge representation, and knowledge

that is expressed in one formalism cannot

Attempting to

move beyond

the capabilities

of current

knowledge-

based systems
mandates

knowledge
bases that are

substantially

larger than
those we have

today.
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 ad, the process of building a knowledge-based system will

start by assembling reusable components.

directly be incorporated into another formal-

ism. However, this diversity is inevitable--the

choice of one form of knowledge representa-

tion over another can have a big impact on a

system's performance. There is no single

knowledge representation that is best for all

problems, nor is there likely to be one. Thus,

in many cases, sharing and reusing knowl-

edge will involve translating from one repre-

sentation to another. Currently, the only way

to do this translating is by manually recoding

knowledge from one representation to anoth-

er. We need tools that can help automate the

translation process.

Impediment 2. Dialects within Language

Families: Even within a single family of

knowledge representation formalisms (for

example, the KL-One family), it can be diffi-

cult to share knowledge across systems if the

knowledge has been encoded in different
dialects. Some of the differences between

dialects are substantive, but many involve

arbitrary and inconsequential differences in

syntax and semantics. All such differences,

substantive or trivial, impede sharing. It is

important to eliminate unnecessary differ-

ences at this level.

Impediment 3. Lack of Communication

Conventions: Knowledge sharing does not

necessarily require a merger of knowledge

bases. If separate systems can communicate

with one another, they can benefit from each

other's knowledge without sharing a common

knowledge base. Unfortunately, this approach

is not generally feasible for today's systems

because we lack an agreed-on protocol speci-

fying how systems are to query each other
and in what form answers are to be delivered.

Similarly, we lack standard protocols that

would provide interoperability between

knowledge representation systems and other,

conventional software, such as database man-

agement systems.

Impediment 4. Model Mismatches at the

Knowledge Level: Finally, even if the language-
level problems previously described are

resolved, it can still be difficult to combine

two knowledge bases or establish effective

communications between them. These

remaining barriers arise when different primi-

tive terms are used to organize them; that is,

if they lack shared vocabulary and domain

terminology. For example, the type hierarchy

of one knowledge base might split the concept

Obiect into Physical-Object and Abstract.

Object, but another might decompose Object

into Decomposable-Object, Nondecompos-

able-Object, Conscious-Being, and Non-Con-

scious-Thing. The absence of knowledge

about the relationship between the two sets
of terms makes it difficult to reconcile them.

Sometimes these differences reflect differ-

ences in the intended purposes of the knowl-

edge bases. At other times, these differences

are just arbitrary (for example, different

knowledge bases use Isa, Isa-kind-of, Sub-

sumes, AKO, or Parent relations, although

their real intent is the same), if we could

develop shared sets of explicitly defined ter-

minology, sometimes called ontologies, we

could begin to remove some of the arbitrary

differences at the knowledge level. Further-

more, shared ontologies could provide a basis

for packaging knowledge modules---describ-

ing the contents or services that are offered

and their ontological commitments in a com-

posable, reusable form.

A Vision: Knowledge Sharing

In this article, we present a vision of the

future in which the idea of knowledge shar-

ing is commonplace. If this vision is realized,

building a new system will rarely involve

constructing a new knowledge base from

scratch. Instead, the process of building a

knowledge-based system will start by assem-

bling reusable components. Portions of exist-

ing knowledge bases would be reused in

constructing the new system, and special-pur-

pose reasoners embodying problem-solving

methods would similarly be brought in. Some

effort would go into connecting these pieces,

creating a "custom shell" with preloaded

knowledge. However, the majority of the

system development effort could become

focused on creating only the specialized

knowledge and reasoners that are new to the

specific task of the system under construction.

In our vision, the new system could interop-

erate with existing systems and pose queries

to them to perform some of its reasoning.
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Furthermore, extensions to existing knowl-
edge bases could be added to shared reposito-
ries, thereby expanding and enriching them.

Over time, large rich knowledge bases, anal-
ogous to today's databases, will evolve. In this
way, declarative knowledge, problem-solving
techniques and reasoning services could all be
shared among systems. The cost to produce a
system would decrease. To the extent that
well-tested parts were reused, a system's
robustness would increase.

For end users, this vision will change the
face of information systems in three ways.

First, it will provi_le sources of information
that serve the same functions as books and

libraries but are more flexible, easier to update,
and easier to query. Second, it will enable the
construction and marketing of prepackaged
knowledge services, allowing users to invoke
(rent or buy) services. Third, it will make it
possible for end users to tailor large systems
to their needs by assembling knowledge bases
and services rather than programming them
from scratch.

We also expect changes and enhancements
in the ways that developers view and manipu-
late knowledge-based systems. In particular,
we envision three mechanisms that would

increase their productivity by promoting the
sharing and reuse of accumulated knowledge.
First among these are libraries of multiple
layers of reusable knowledge bases that could
either be incorporated into software or remote-
ly consulted at execution time. At a level
generic to a class of applications, layers in
such knowledge bases capture conceptualiza-
tions, tasks, and problem- solving methods.
Second, system construction v_ill be facilitat-

ed by the availability of common knowledge
representation systems and a means for
translation between them. Finally, this new
reuse-oriented approach will offer tools and
methodologies that allow developers to find
and use library entries useful to their needs as
welJ as preexisting services built on these
libraries. These tools will be complemented
by tools that allow developers to offer their
work for inclusion in the libraries.

The Knowledge-Sharing Effort

We are not yet technically ready to realize
this vision. Instead, we must work toward it

incrementally. For example, there is no con-
sensus today on the appropriate form or con-
tent of the shared ontologies that we
envision. For this consensus to emerge, we
need to engage in exercises in building shared

knowledge bases, extract generalizations from
the set of systems that emerge, and capture

these generalizations in a standard format
that can be interpreted by all involved. This
process requires the development of some
agreed-on formalisms and conventions at the

level of an interchange format between lan-
guages or a common knowledge representa-
tion language.

Simply enabling the ability to share knowl-
edge is not enough for the technology to
have full impact, however. The development
and use of shared ontologies cannot become
cost effective unless the systems using them
are highly interoperable with both AI and
conventional software, so that large numbers
of systems can be built. Thus, software inter-
faces to knowledge representation systems
are a crucial issue.

The Knowledge-Sharing Effort, sponsored
by the Air Force Office of Scientific Research,
the Defense Advanced Research Projects
Agency, the Corporation for National Research
Initiatives, and the National Science Founda-
tion (NSF), is an initiative to develop the
technical infrastructure to support the shar-
ing of knowledge among systems. The effort

is organized into four working groups, each
of which is addressing one of the four imped-
iments to sharing that we outlined earlier.
The working groups are briefly described here
and in greater detail later in the article.

The Interlingua Working Group is develop-
ing an approach to translating between
knowledge representation languages. Its
approach involves developing an intermedi-
ary language, a knowledge interchange format
or interlingua, along with a set of translators
to map into and out of it from existing
knowledge representation languages. To map
a knowledge base from one representation
language into another, a system builder
would use one translator to map the knowl-
edge base into the interchange format and
another to map from the interchange format
back out to the second language.

The Knowledge Representation System
Specification (KRSS) Working Group is taking
another, complementary tack toward pro-
moting knowledge sharing. Rather than
translating between knowledge representa-
tion languages, the KRSS group is seeking to
promote sharing by removing arbitrary dif-
ferences among knowledge representation
languages within the same paradigm. This

group is currently working on a specification
for a knowledge representation system that

brings together the best features of languages
developed within the KL-One paradigm. Sim-
ilar efforts for other families of languages are
expected to follow.

The External Interfaces Working Group is
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Material-Processing-Step,

Processing-Step_

Data-Processing-Step
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Figure 1. The MKS Ontolog)' of Manufacturing Operations, Elaborated with

Knowledge Specific to Semiconductor Manufact]zring.

Ontologies such as this one, in effect, lay the ground rules for modeling a domain by

defining the basic terms and relations that make up the vocabulary of this topic area.

These ground rules serve to guide system builders in fleshing out knowledge bases,

building services that operate on knowledge bases, and combining knowledge bases

and services to create larger systems. For one system to make use of either the knowl-

edge or reasoners of another system, the two must have consistent ontologies.

investigating yet another facet of knowledge

sharing. It is developing a set of protocols for

interaction that would allow a knowledge-

based system to obtain knowledge from

another knowledge-based system (or, possibly,

a conventional database) by posting a query

to this system and receiving a response. The

concerns of this group are to develop the pro-

tocols and conventions through which such

an interaction could take place.

Finally, the Shared, Reusable Knowledge

Bases Working Group is working on overcom-

ing the barriers to sharing that arise from lack

of consensus across knowledge bases on

vocabulary and semantic interpretations in

domain models. As mentioned earlier, the

ontology of a system consists of its vocabu-

lary and a set of constraints on the way terms
can be combined to model a domain. All

knowledge systems are based on an ontology,

whether implicit or explicit. A larger knowl-

edge system can be composed from two

smaller ones only if their ontologies are con-

sistent. This group is trying to ameliorate

problems of inconsistency by fostering the

evolution of common, shareable ontologies.

A number of candidate reusable ontologies

are expected to come from this work. Howev-

er, the ultimate contribution of the group lies

in developing an understanding of the group

processes that evolve such products and the
tools and infrastructure needed to facilitate

the creation, dissemination, and reuse of

domain-oriented ontologies.

Architectures of the Future

In this section, we elaborate on our vision by

describing what we hope to enable concern-

ing both knowledge bases and the systems

that use them. In doing so, we look at how

they are structured and the process by which

they will be built. We also consider the rela-

tionship of this vision to other views that

have been offered, such as Guha and Lenat's

(1990) Cyc effort, Stefik's (1986) notion of

Knowledge Media, and Kahn's notion of

Knowbots (Kahn and Cerf 1988). Finally, we

offer a view of the range of system models

that this approach supports.

Structural and Development Models

for Knowledge Bases

In a AAAI-90 panel on software engineering,

John McDermott (1990) described how AI

could make software development easier:

Write programs to act as frameworks for han-

dling instances of problem classes.

Knowledge-based systems can provide such

frameworks in the form of top-level declara-

tive abstraction hierarchies, which an applica-

tion builder elaborates to create a specific

system. Essentially, hierarchies built for this

purpose represent a commitment to provide

specific services to applications that are will-

ing to adopt their model of the world.

When these top-level abstraction hierar-

chies are represented with enough informa-

tion to lay down the ground rules for

modeling a domain, we call them ontologies.

An ontology defines the basic terms and rela-

tions comprising the vocabulary of a topic

area as well as the rules for combining terms

and relations to define extensions to the

vocabulary. An example is the MKS generic

model of manufacturing steps (Pan, Tenen-

baum, and Glicksman 1989), illustrated in

figure 1 along with a set of application-specif-
ic extensions for semiconductor manufactur-

ing. The frame hierarchy in MI<S defines

classes of concepts that the system's reason-

ing modules (for example, schedulers and

diagnosers) are prepared to operate on. The
slots and slot restrictions on these frames

define how one must model a particular man-

ufacturing domain to enable the use of these
modules.
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Figure 2. The Anatomy of a Knowledge Base.

Application systems contain many different kinds and levels of knowledge. At the top level are ontologies, although

often represented only implicitly in many of today's systems. Tire top-level ontologies embody representational choices

ranging from topic independent (for example, models of time or caasalit)') to topic specific but still application-inde-

pendent knowledge (for example, domain knowledge about different kinds of testing operations represented in a man-

ufacturing system or problem-soh'ing knowledge about hypothesis classes in a diagnostic system). This top level of

knowledge is elaborated by more application-specific models (for example, knowledge about chip-testing operations

in a specific manufacturing application or failure modes in a circuit diagnosis system). Together, tire), define how a

particular application describes tire world. At the bottom level, assertions using the vocabula O' of these models capture

tire current state of the sygtem's knowledge. Knowledge at the higher levels, being less specialized, is easier to share

and reuse. Knowledge at tire lower levels can only be shared if the other system accepts the models in tire levels above.

The MKSexample is hardly unique. A number

of systems have been built in a manner con-
sistent with this philosophy, for example,
H_,'s]-(:m and _'i_x[-ct:-r (Cutkosky and Tenen-
baum 1990), QI't (Forbus 1990), Cvc (Guha

and Lenat 19901, A_ltS (Johnson and Harris
1990), sa(;t: (Roth and Mattis 1990), Carnegie
Mellon University's factory scheduling and

project management system (Sathi, Fox, and
Greenberg 1990), KmS (Smith 1990), and EES
(Swartout and Smoliar 1989). The notion that

generic structure can be exploited in building
specialized systems has been argued for a long
time by Chandrasekaran (1983, 1986) and
more recently bv Steels (1990). The notion
has also long been exploited in knowledge-
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 intology defines the basic terms and relations comprising the

vocabulary of a topic area...

acquisition work, for example, in systems

such as MORt (Kahn, Nowlan, and McDermott

1984) and ROGET (Bennett 1984).

The range of knowledge captured with

ontologies is described in figure 2. There is

some fuzziness in the figure's distinction

between shared and custom ontologies

because they are relative terms--any given

knowledge base is custom with respect to the

knowledge it extends and is shared with respect

to the knowledge that extends it. Nevertheless,

the essential idea is that application know/-

edge bases should consist of layers of increas-

ingly specialized, less reusable knowledge. As

is argued later, explicitly organizing knowl-

edge bases in this fashion is a step on the crit-

ical path to enabling sharing and reuse.

There are a number of uses for ontologies.

The primary uses today are in defining

knowledge-based system frameworks in the

spirit advocated by John McDermott (1990).

However, a number of additional possibilities

open if libraries of these ontologies can be

developed because these libraries define the

common models needed for combining

knowledge bases or successfully communicat-

ing between independent modules. Ontolo-

gies and knowledge bases can also be viewed

as ends in themselves, that is, as repositories

of information in the spirit suggested by Stefik's

(1986) discussion of knowledge media.

Although every knowledge-based system

implicitly or explicitly embodies an ontology,

ontologies are rarely shared across systems.

Commonalities among existing systems can be

identified and made shareable. For example,

Stanford's Summer Ontology Project found

that several of the collaborators had built sys-

tems that used models of mechanical devices

based on concepts such as module, port, and

connection (Gruber 1991). However, each

system used slightly different names and for-

malisms. An ontology for lumped element

models that defines these concepts with con-

sistent, shareable terminology is under con-

struction. A library of such shared ontologies

would tacilitate building systems by reducing
the effort invested in reconciliation and rein-

venlJOll.

Structural and Development Models

for Knowledge-Based Systems

Figure 3 illustrates the envisioned organiza-

tion of an individual knowledge-based appli-

cation system. The local system consists of a

set of services that operate on combined (or

indistinguishable) knowledge bases and

databases. One uniform user interface man-

agement system mediates interactions with

humans, and a set of agents mediates interac-

tion with other systems.

The services that make up the application

consist of various reasoning modules, which

can be defined at either the level of generic

reasoning and inference mechanism (for

example, forward chaining, backward chaining,

unification) or the task level (for example,

planners, diagnosers). These modules would

typically be acquired off the shelf. At either

level, however, they can be augmented by

special-purpose reasoning modules that pro-

vide custom capabilities for exploiting partic-

ular characteristics of the application domain.

In addition to these reasoning modules, the

application's services are also likely to include

a number of modules providing conventional

capabilities, such as spreadsheets, electronic

mail, hypermedia, calendar systems, statisti-

cal packages, and accounting systems.

To perform the tasks of the overall system,

modules will need to interact internally (that

is, knowledge base to knowledge base) and

externally (that is, knowledge base-database

to other knowledge-based systems or arbitrary

outside software applications). For external

interaction, the modules will need a language

for encoding their communications. SQI.

serves this function for conventional database

interactions, and it appears likely that it will
continue to be used in the future. We call the

analogous programmatic interface for knowl-

edge-based applications KQML (knowledge

query and manipulation language). KQMt will

consist of a language for specifying wrappers

that define messages communicated between

modules. These wrappers will surround decla-

rations that will express whatever knowledge
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Figure 3. Architecture of a Knowledge-Based System.

We em,i._ion that kmm,ledge-based s)'stems will be assembled from components rather than b,ilt from scratch. The
components inchMe a fiamework fi_r local system sof_vare in which one or more local knowledge bases are tied to a
shared ontolog): Remote knowledge bases can be accessed and are understood by the local system by virtue offbeing
tied lit to the ontolq_: Sfwcialized reasoni_tgmodules (for example, a diagnostic system) amt generic reaso_titlgsystems
(that is, a reptesemation system) are also tied to the knowledge base(_) throufll the o,ztolo_q.',in turn, these systems
me flued toy,ether with convetltional services through specialized, custom ,q,plicatiorl code. Larger systems can be
obtained thmt smalh'¢ ortcs in this an-hitccture by either exfnmditt g the co.tc.ts of a local system or interliHhiJtg mttl-
tiph, systcm_ built in this t,_shiml.
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Figure 4. Em'isioned Phases in Defining a Knowledge-Based System.
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a cot_fidqtm_tion task and, correspotldingh; le._s eta prosnmmfing activity. S)'stcm builders could sth'ct specialized r_,,_-
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tu_h,, _h_'ll can dl_'n hc ntilized to huihI the' applicati<,z fiom a hi_her-h,vel st_rti_l X poi_tt.
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the sending module must pass to the receiv-

ing module.

The uniform KQML communication protocol

will facilitate modular construction of system

components and, thus, facilitate the develop-

ment of libraries of reusable components.

Such libraries will contain generic reasoners

such as truth maintenance systems, task-spe-

cific reasoners (planners, diagnosers, and so

on), and domain-specific reasoners (for exam-

ple, electric circuit simulators). The libraries

will also contain a number of ontologies cov-

ering both structural knowledge and problem-

solving knowledge. Some will be domain

oriented, and some_will correspond to particu-

lar reasoners. Also residing in these libraries

will be a collection of knowledge representa-

tion system implementations to choose from.

We expect that several different representation-

al paradigms, or families, might be available

in the library. For each family, we expect mul-

tiple implementations of a common core lan-

guage, similar to Common Lisp (Steele 1984),

which has a core specification and several

competing implementations of this specifica-

tion, each of which offers various performance,

environment, and function enhancements.

As figure 4 illustrates, application-specific

systems will be developed by assembling com-

ponents from a library into a customized

shell, which is then used to develop the appli-

cation. The first task of system developers

would be to configure this specialized shell.

This process will involve selecting ontologies,

specialized reasoning modules, and a knowl-

edge representation system from the library.

As in any configuration task, there are likely

to be constraints that must be respected. For

example, a particular specialized scheduling

module might assume that tasks to be sched-

uled are modeled according to a particular

ontology. The entries in the library must pro-

vide enough information about themselves to

allow system developers to understand these
constraints.

Once the ontologies, specialized reasoning

modules, and a knowledge representation

system have been selected and assembled, the

system developers have a specialized shell for

their application. This shell differs from today's
shells in that it will come with built-in knowl-

edge, not just specialized programming fea-

tures. The system developers' tasks are then to

flesh out the knowledge base, add whatever

custom application code is necessary, and

write software interfaces to any other systems

the new application will work with.

In configuring this specialized shell, it

would be highly desirable if there were sup-

port for translation between representations.

_1_ Exlend

j lnterwew and test

Knowledge _ System N _ JKnowledg_P--Base_ Use_
System _ Engineers__| System _ Users)
_u.amg I _ re,me, L I \ ./

Tools J _ test
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r ..... J- .... --,
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Bases & I I Bases &

Reasoning II Jl Reasoning
Methods I I Methods
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..... .... J .... .....
I Rev se, extend Study, evaluate

_____ I and reconcile and reuse
/ Knowledge "_ !
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Figure 5. Current versus Envisioned Models of the AI Software Life Cycle.

Adding knowledge libraries represents a significant change in methodology for buihling

knowledge-based systems. Knowledge librarians, a new catego O, of participa_lt in the

process, would ensure that submitted ontologies and reasoners were ready for release.

They would help system engineers browse the library and select modules. Tho _would

also help tool builders create tools and development environments to assist it1 these
activities.

Then, developers would not be obliged to use

the original implementation if their applica-

tion had different performance or function

requirements. For example, a common ontol-

ogy of electromechanical devices could serve

DRAMA (Harp et al. 1991), which analyzes

logistical implications of design changes, and

COMET (Feiner and McKeown 1990), which

generates multimedia how-to presentations

about maintenance tasks. COMET needs device

models to access related device components

and primarily requires efficient storage and

retrieval from its representation language. In

contrast, I)RAMA analyzes implications of large

amounts of changing knowledge and, there-

fore, demands efficient inference mechanisms.

Note that the approach we have been

describing scales with the evolution of infras-
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 ing a knowledge library represents a significant change to

knowledge base methodology.

tructure for knowledge sharing. It is feasible

with existing technMogy. ]f and when common

knowledge representation systems become

available, their use would broaden the porta-

bility and reusability of a given library. Simi-

larly, the development and dissemination of

techniques for translation between different

representation languages would also broaden

the use of a library.

Figure 5 contrasts our model of the life

cycle for knowledge-based software with the

approach fo]towed in expert system software

today. The notion of libraries is a key differ-

ence. In today's models of expert system

software development, exemplified by Water-

man's (1986) book on expert systems, there

are at least four classes of participants in the

life cycle. Tool builders create shells and

development environments. System engi-
neers take these tools and create an initial

version of a knowledge-based system by inter-

viewing domain experts. Then, together with

the domain experts, the system engineers

test, extend, and refine the system. Finally,

end users put the system to use. The vision

we propose changes the nature of the system

engineer's work and has the potential to

merge roles by giving domain experts more

ability to act as system engineers. It also adds

a new participant to the infrastructure: a

knowledge librarian, who serves as a keeper

of reusable ontologies and implementations

of specialized reasoning methods.

The knowledge librarian works with tool

builders on tools and development environ-

ments to help system engineers browse and

select modules from the library. System engi-

neers import, extend, and customize these

modules. They can retain the customized

elements in private libraries for sharing and

reuse within a subcommunity. Alternatively,

the), can offer their developments to the

library for possible inclusion as extensions to

the existing set of knowledge.

One of the crucial functions that must be

performed in the management of a knowl-

edge library is the determination of when

submitted knowledge is read), for release. If

knowledge is simply added and edited by all

participants without some discipline, then it

will be difficult to achieve the level of relia-

bility and stability needed for practical soft-

ware development.

'Adding a knowledge library represents a

significant change to knowledge base method-

ology. It transforms the system-building

process away from using power tools for con-

structing essentially custom, one-of-a-kind

systems. Instead, system building becomes a

process of selecting and combining a range of

components. The system engineer becomes

much more like a builder of homes and much

less like a sculptor. A home builder has a range

of components and materials, from bricks

and two-by-fours to prefabricated walls or

even rooms. A home builder has a choice of

building each new home from small compo-

nents that give a lot of design flexibility or

from larger components that trade off reduced

design options for reduced construction

effort. Similarly, system engineers would find

a range of grain sizes among objects in the

knowledge library and would be empowered

to make analogous choices.

Comparison with Other Visions

The model of knowledge-based systems that

we just described bears significant relation-

ships to other notions that have been offered.

One recent example is MCC Corporation's

Cyc Project (Guha and Lenat 1990), which

seeks to develop an extremely large knowl-

edge base of commonsense knowledge under

which all applications would be built. The

Cyc Project provides a language, Cyc-L, for

implementing its ontology and developing

an application-specific knowledge base.

Because its scope is so broad, Cyc represents

one extreme in the range of efforts compatible

with the model we propose. In our scheme,

Cyc's knowledge base could be one large

entry in the library of components (or, per-

haps, it might be broken into several smaller

modules, or microtheories). Its implementation

language, CyoL, would be one of the entries

in the library o_ representation systems, li

one chose to build a system entirely within

Cyc, our model of the development process

and thai of the Cvc Project are largely consis-

46 AI MAGAZINF.



Articles

tent. If one wishes to go outside Cyc, our

model is complementary. Potential users

might use our knowledge-interchange format

to translate other knowledge bases into Cyc-L

or, conversely, to translate Cyc's knowledge

into some other representation system. Alter-

natively, they might use external protocols to

access a module built in Cyc and build other

modules through other means.

If successful, our approach would help make

the knowledge in Cyc accessible even to those

system developers who for one reason or

another do not choose to use the whole Cyc

knowledge base or _epresent their systems in

Cyc-L.

However, the model we propose also differs

significantly from the Cyc effort. Among

other things, it allows the development of

large systems without having to first commit

to a particular knowledge representation for-

malism; users do not even have to commit to

homogeneity. Furthermore, this approach

allows for the development and use of

ontologies and knowledge bases under a more

conservative, bottom-up development model

as an alternative to committing to a large,

broad knowledge base. Thus, an alternative

use of this model aims for the evolution of

smaller, topic-specific ontologies intended for

sharing by specialized communities. (Over

time, it is possible that these topic-specific

ontologies would grow and merge with others,

so that an eventual end result might be a

broadly encompassing ontology such as that

sought by the Cyc effort.)

Our vision owes a great deal to Mark Stefik's

(1986) view of knowledge bases as the next

mechanism of information exchange. Stefik

was interested, as are we, in both how sys-
tems of the future will be built and what uses

will be made of them. He suggested that

expert systems were parts and precursors of a

new knowledge medium, a set of interactive

multidisciplinary tools for information

manipulation:

A knowledge medium based on AJ

technology is part of a continuum. Books

and other passive media can simply store

knowledge. At the other end of the spec-

trum are expert systems which can store

and also apply knowledge. In between are

a number of hybrid systems in which the

knowledge processing is done mostly by

people. There are many opportunities for

establishing human-machine partnerships

and for automating tasks incrementally.

In these interactive tools, the computer pro-

vides storage, retrieval, and group communi-

cations services as welt as languages and tools

that enable precision and explicitness in

manipulating knowledge about a topic.

in producing the new knowledge medium,

Stefik argued that expert systems should be

viewed as complex artifacts, such as automo-

biles or airplanes, which are assembled from

highly sophisticated materials and subassem-

blies. A marketplace that supports the special-

ized suppliers of component technologies

benefits the manufacturer of the end product.

The marketplace provides economies of scale

that make it possible to develop component

technologies of a quality and sophistication
that would be unaffordable if the costs had to

be borne entirely within a single, built-from-

scratch, one-of-a-kind product development

effort. Thus, by analogy, Stefik concluded that

...the "goods" of a knowledge market are

elements of knowledge... To reduce the

cost of building expert systems, we need

to be able to build them using knowledge

acquired from a marketplace. This

requires setting some processes in place

and making some technical advances.

In particular, Stefik urged combining work

on expert system shells with work on stan-

dard vocabularies and ways of defining things

in terms of primitives. This suggestion is simi-

lar to the notion of ontologies proposed in

this article. However, Stefik questioned (as do

we) the feasibility of relying entirely on the

development of standard vocabularies or

ontologies for domains. The key to their

effectiveness lies in how these ontologies are

analyzed, combined, and integrated to create

large applications. Tools and methods are

needed to support this process. Our vision

seeks to extend Stefik's by trying to further

define the process as well as the supporting
tools and methods.

Our particular extensions also have some

kinship to the architecture of the national

information infrastructure envisioned by

Rahn and Cerf (1988) for the Digital Library

System. Their vision of the library of the
future consists of information collections

bearing some analogies to Stefik's knowledge

media. The Digital Library System provides a

distributed network architecture for accessing
information. The architecture contains

database servers, various accounting and

billing servers, servers to support placing

knowledge into the library and extracting

knowledge from it, and servers for translating

knowledge flowing to and from the library

into different forms. The Digital Library

System suggests a model for how our vision of

development, distribution, and dissemination

of knowledge-based systems might be realized

in the future. At the same time, our vision

proposes sut_porting technology--for example,

FAI.1. 1991 47



Art ich's

There

are many
unanswered

questions
about how

large-scale

systems can
best be built.

I I
Centralized

J

Distributed

Hierarchies or Blackboards

Mixed

Figure 6. A Range of (potentially heterogeneous) System Models.

The technoh_g), described in this artich' enables experimentation with alternative models for architectures of knowl.
edge-ba_ed systems. Shared ontologies provide the basis fi_r protocols that link separate modtdes.

representation systems and translators-- that

could help realize the Digital Library System.

Supporting a Range of System

Architectures

The technology described in this article is

intended to provide enabling tools for build-

ing a range of architectures for large, knowl-

edge-based systems. Figure 6 illustrates one

dimension of this range. Within the scope of

our vision, a system might be built as a

single, large, integrated, centralized package

(as depicted in figure 4). In this model, shar-

ing and reuse occur at design time. Software-

engineering concerns such as modularity can

be achieved by partitioning the knowledge in

this system into multiple bases linked by

shared ontologies. Alternatively, however, the

large system could be factored into multiple

separate modules, communicating according
to any of a number of alternative control

regimes. Sharing and reuse in this fashion

occur at run time. Modularity for software-

engineering reasons can be handled by the

separation of modules as well as by the same

internal structuring, as in the first case. Some

control regimes seemingly require that each

module know a great deal about the others;

the duplication of information in each

module that is entailed is usually regarded as

a potential maintenance bottleneck. However,

the architecture provides natural mechanisms

(ontologies and standard communications

components) for encapsulating the knowledge

needed for intermodule communication.

Over and above module structuring, system

models can vary along a number of other

dimensions in this scheme. These dimensions

include the choice of representation languages

used within modules, the homogeneity or

heterogeneity of representation systems across

modules, the use of specialized reasoning

modules, the nature of ontologies, the con-

tent of the knowledge bases, the partitioning

of the knowledge bases, the tightness of cou-

pling with databases, the degree of trans-

parency of modules (black boxes versus glass
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boxes), and the locus of control.

There are many unanswered questions

about how large-scale systems can best be

built. Although sharing and reuse are dearly

essential principles, the best way to make

them operational remains to be understood.

What are the trade-offs between sharing ser-

vices at run time versus sharing knowledge

bases at design time? On wlxat scale and under

what circumstances is translation viable?

When are shared formalisms, rather than

translation, required? How do domain-specif-

ic considerations drive choices of system
models? What are the constraints on the

usability of knowledge originally recorded for

different purposes? What mechanisms best

facilitate convergence between multiple users

on a mutually satisfactory representation?
The intent behind the framework we out-

lined is not to enshrine a particular set of

answers to such questions. Rather, our goal is

to identify enabling technologies that make it

easier to search the space of possible answers.

The right answers will emerge only if we first

make it easier for the AI community to explore

the alternatives empirically--by building a

number of large systems.

Working Groups in the
Knowledge-Sharing Initiative

The desire to collaborate through knowledge

sharing and reuse has arisen within a segment

of the broad knowledge representation com-

munity that is interested in scaling up to

larger systems and that views the sharing and

reuse of knowledge bases as a means to this

end. Closely related to this effort is a concern

for building embedded systems in which

knowledge representation systems support
certain functions rather than act as ends in

themselves.

In particular, our goal is to support researchers

in areas requiring systems bigger than a single

person can build. These areas include engi-

neering and design domains, logistics and

planning domains, and various integrated

modality areas (for example, multimedia

interfaces). Researchers working on such topics

need large knowledge bases that model com-

plex objects; because these models drive com-

plex systems, they cannot be skeletons. Putting

together much larger systems, of which vari-

ous stand-alone systems being built today are

just components, is an interesting challenge.

lhe creation of such knowledge resources

requires communitvwide effort. This effort

engenders a need for agreed-on conventions

to enable us to build pieces that fit together.

Eventually, in pursuing the goal of large,

shared knowledge bases as part of a nation-

wide information infrastructure, these con-

ventions might become objects of study for

the definition of more formal standards. (For

those interested in the role of standards in

computing infrastructure, Cargill [19891 is a

useful entry point into the topic.) Currently,

however, the conventions are intended to

support experiments in knowledge sharing

among interested parties.

The next part of this article focuses on

making our vision operational by developing

these conventions. Doing so is an essential

precursor to larger aspects of our vision, such

as libraries of ontologies, reasoning modules,

and representation systems. This section

describes the activities of our four working

groups on these foundation-laying activities.

For each group, we summarize the problem

being addressed, the approach being taken,

and the outcomes sought.

Interlingua

The lnterlingua Working Group is beaded by

Richard Fikes and Mike Genesereth, both of

Stanford University.

Problem Formulation. The lnterlingua

Working Group focuses on the problems

posed by the heterogeneity of knowledge rep-

resentation languages. Specifically, to inter-

change knowledge among disparate programs

(written by different programmers, at differ-

ent times, in different languages), effective

means need to be developed for translating

knowledge bases from one specialized repre-
sentation language into another. The goal of

this group is to specify a language for com-

municating knowledge between computer

programs (as opposed to a language for the

internal representation of knowledge within

computer programs). This language needs

(11 an agreed-on declarative semantics that

is independent of any given interpreter, (2)

sufficient expressive power to represent the

declarative knowledge contained in typical

application system knowledge bases, and (3)
a structure that enables semiautomated trans-

lation into and out of typical representation
languages.

Approach. This group is specifying a lan-
guage (k]r [knowledge interchange format])

that is a form of predicate calculus extended

to include facilities for defining terms, repre-

senting knowledge about knowledge, reifying

functions and relations, specifying sets, and

encoding commonly used nonmonotonic rea-

soning policies. The group is also conducting

knowledge-interchange experiments to sub-

stantially test the viability and adequacy of

The creation

of.. knowl-

edge resources

requires

comm.nity-

wide effort.
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 goal... is to specify a language for communicating knowledge

between computer programs...

the language. The experiments focus on
developing and testing a methodology for
semiautomatic translation to and from typi-
cal representation languages and the use of
the interchange format as an intermodule
communication language to facilitate inter-
operability.

Outcomes. The specification for interlingua
will evolve in a set of layers. The innermost
layer will be a core, analogous to the primi-
tives in Lisp, providing basic representational
and language extension functions. The next
layer will provide idioms and extensions that
make the language more usable, analogous to
the set of functions provided by Common
Lisp. This working group will be responsible
for developing these specifications. Its output
will be (1) a living document containing the
current KIF specification, describing open
issues, and presenting current proposals for
modification and (2) a corpus of documented
rnicroexamples, using fragments of knowledge
bases to illustrate how they translate into _tF
and to point out open issues.

By the time this group has completed its
work, we expect that the documented inter-

lingua specification will define a language in
which the sharing and reuse of the contents

of individual knowledge bases can be accom-
plished by transmitting specifications using
_IF as the medium for expressing these lan-
guages. The language will be oriented toward
supporting translation performed with a
human in the loop, and we expect that sever-
al prototype translation aids will be devel-
oped during the course of this work.

Knowledge Representation System

Specifications

The KRSS working group is headed by Bill
Swartout of University of Southern Califor-
nia/Information Sciences Institute (USC/ISI)
and Peter PateI-Schneider of AT&T Bell Labs.

Problem Formulation. This group is con-
cerned with specification on a separate
family-by-family basis of the common ele-
ments within individual families of knowl-

edge representation system paradigms. The
intent is not to develop a "be-all, end-all"
knowledge representation system. The group

is not trying to develop one language that
encompasses all approaches to knowledge
representation; rather, it seeks to create speci-
fications that incorporate the good features
within families and develop a common ver-
sion that is reasonably comprehensive yet
pragmatic for each individual family. An
example of one such family is the set of KL-

One descendents, that is, object-centered lan-
guages with definitional constructs, such as
CLASSJC,LOOM, BACJ<,SB-One, and OMEGA. The

effort should be viewed more as an attempt
to develop a Common Lisp rather than a PL-1
or Ada. The analogy to Common Lisp is
imperfect, however. Knowledge representation
systems perform inference on the informa-
tion represented within them; programming
languages do not. Thus, specifying what
inferences should be performed is an addi-
tional issue in specifying a knowledge repre-
sentation system.

Approach. The goal of this group is to
allow system builders working within a
family to provide a common set of features
that have consensus within this paradigm in
addition to the augmentations that they
regard as their research contribution. The
resulting language will serve as a medium for
sharing knowledge bases as well as a means
for communicating ideas and issues among
researchers. Potential benefits are the abilities

of users to more readily convert between sys-
tems and to borrow models originally built to
run in other systems. The trade-offs assumed
by this group are the mirror image of those
faced by the Interlingua Working Group:
They eliminate the problem of translating
knowledge bases between systems but require
one to work within a given formalism to
obtain this benefit.

Specifying a knowledge representation
system poses the interesting challenge of
specifying just what kinds of inference the
system should perform. From Brachman and
Levesque (1984), we know that if the system
is expressive enough to be useful, the infer-
ences that its reasoner draws will be incom-

plete. How should this incomplete inference

be specified? The group's approach is to con-
struct a layered specification. There will be an
inner core of the language, which will consist
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of a few constructs. Because this inner core
will have limited expressivity, it will be possi-

ble to perform complete inference on it.
Another layer, the outer core, will be built on
the inner core. This layer will significantly

extend the expressivity of the language, but
inference on it will be incomplete. To specify
the inferences that should be performed, the

group will provide an abstract algorithm
for drawing just those inferences that are

required by the specification. Implementers
of the specification must provide a reasoner
at least as powerful as the one specified by

this algorithm.

Outcomes. The group is seeking to develop

a published specification and at least one ini-
tial implementation of a common language.

External Interfaces

The External Interfaces Working Group,

cochaired by Tim Finin of the Unisys Center
for Advanced Information Technology and
Gio Wiederhold of Stanford University, focus-

es on interfaces that provide interoperability
between a knowledge representation system
and other software systems.

Problem Formulation. The time is ending

when an intelligent system can exist as a
single, monolithic program that provides all
the functions necessary to do a complex task.

Intelligent systems will be used and deployed
in environmentsthat require them to interact
with a complex of other software compo-
nents. These components will include con-
ventional software modules, operating system
functions, and database servers as well as
other intelligent agents. There is a strong
need to develop standard interface modules
and protocols to make it easier to achieve this
interoperability. The working group is con-
cerned with three aspects of this problem:
providing interoperability with other intelli-
gent agents, conventional (for example, rela-
tional) database management systems, and
object-oriented database systems.

Approach. To provide run-time interoper-
ability between knowledge representation sys-
tems, we need a language or protocol that
allows one system to pose queries or provide
data to another. The group has begun the
specification of such a language, KQML. The
intent is that KQMLwill be to knowledge repre-
sentation systems what SQ1. has become to
database management systems--a high-level,
portable protocol for which all systems will
provide interfaces. The current specification is
organized as a protocol stack in which the
lowest information-conveying layer is based

on the interlingua. Higher layers in this stack
provide for modality (for example, assert,
retract, query), transmission (for example, the
specification of the recipient agent or agents),
and complex transactions (for example, the
efficient transmission of a block of data).

The integration of At and database manage-
ment system technologies promises to play a
significant role in shaping the future of com-
puting. As noted by Brodie (1988), this inte-
gration is crucial not only for next-generation
computing but also for the continued devel-
opment of database management system
technology and the effective application of
much of AI technology. The need exists for (1)
access to large amounts of existing shared
data for knowledge processing, (2) the effi-
cient management of data as well as knowl-
edge, and (3) the intelligent processing of
data. The working group is studying the
many existing interfaces between knowledge

representation systems and relational databas-
es (for example, Mckay, Finin, and O'Hare
[1990]) and is attempting to develop specifi-
cations for a common one. The primary issues
here are the various ways in which the data in
the databases can best be mapped into the
knowledge representation objects.

The third task that the group is looking at
is providing interfaces between knowledge
representation systems and object-oriented
databases. The goal here is to be able to use
an object-oriented database as a substrate
under the knowledge representation system
to provide a persistent object store for knowl-
edge base objects. This work is exploratory,
but the potential benefits in the long run are
significant. They include (1) building and
managing knowledge bases much larger than
the current technology will support and
(2) providing controls for transactions and
concurrent access to knowledge bases at an

object level.

Outcomes. The External Interfaces Working
Group is concentrating on the development
of the KQMLprotocol as its first goal. It hopes
that an early implementation will be used to
help build test beds for several distributed,
cooperative demonstration systems. With
regard to database interfaces, several working
group members are attempting to integrate
existing models for interfaces between knowl-
edge representation systems and relational
databases and to produce a specification of a
common one. The working group is also plan-
ning an experiment in which a simple inter-
face will be built to allow an existing

object-oriented database to be used as a sub-
strate under one of the representation systems
being investigated by the KRSS working
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the goals proposed in this article suggest a number of high-

payoff research questions for the entire research community.
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group. This approach will provide a feasibility

test and generate data for further exploration.

Shared, Reusable Knowledge Bases

The Shared, Reusable Knowledge Bases Group

is headed by Tom Gruber of Stanford Univer-

sity and Marty Tenenbaum of EITech, Inc.

Problem Formulation. This group is work-

ing on mechanisms to enable the develop-

ment of libraries of shareable knowledge

modules and the reuse of their knowledge-

level contents. Today's knowledge bases are

structured as monolithic networks of highly

interconnected symbols, designed for specific

tasks in narrow domains. As a result, it is dif-

ficult to adapt existing knowledge bases to

new uses or even to identify the shareable

contents. To enable the accumulation of

shareable knowledge and the use of this

knowledge by multiple systems, we need a

means for designing composable modules of

knowledge. The working group is chartered to

identify the barriers to the building and use

of shared knowledge modules, characterize

potential approaches to overcoming these

barriers, and conduct experiments exploring

mechanisms for knowledge sharing.

Approach. The working group supports

three kinds of activity. One is the identification

of important research issues for knowledge

sharing, including problems of methodology

(for example, multidisciplinary, collaborative

knowledge base design) as well as engineering

(for example, scalability, shareability). A

second activity is the development of ontolo-

gies that define terminology used to represent

bodies of shareable knowledge. The task

includes (1) identifying bodies of knowledge

worth the effort to formally represent and

make shareable and (2) defining coherent sets

of terms that characterize the ontological

commitments and representational choices

for modeling these bodies of knowledge. A

third type of working group activity is the

coordination of collaborative experiments in

knowledge sharing in which multiple research

groups attempt to share and use each other's

knowledge bases (for example, libraries of

device models). Some experiments will evalu-

ate the use of ontologies as a mechanism for

sharing (that is, for modularity and compos-

ability of knowledge modules and the specifi-

cation of their contents).

Outcomes. To these ends, the working

group is concentrating on three objectives.

The first is a survey of the state of the art in

research on knowledge sharing and reuse,

which identifies the techniques currently

being explored and recommends research on

the critical problems to be solved. A second

outcome is a set of results from the collabora-

tive experiments on knowledge sharing,

including the ontologies used for each experi-
ment and lessons learned about tools and

methodologies for developing them. An

immediate subgoai for this outcome is to

develop a mechanism for representing these

ontologies in portable form, building on the

work of the other three working groups. The

third, more long-term objective is to develop

a suite of exemplary shared ontologies and

the knowledge bases using them. These

ontologies will serve as research test beds,

playing a role analogous to the E. colt bacteri-

um in biology: a well-understood, complete

example on which to perform a variety of

experiments.

Long-Term Research Issues

The preceding description of the working

groups focused on near.term issues. However,

the goals proposed in this article suggest a

number of high-payoff research questions for

the entire research community. In this sec-

tion, we want to focus on longer-term con-

cerns by reviewing some of these questions.

A number of issues raised by this vision

were also identified by Ron Brachman (1990)

in his AAAI-90 address on the future of

knowledge representation. High on his list of

issues were knowledge representation ser-

vices, knowledge base management, and the

usability of knowledge representation sys-

tems. Brachman pointed out that the idea of

a single, general-purpose knowledge represen-

tation system with optima] expressive power
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might not meet real needs. Instead, he urged,
we must took at different levels of service and
understand what it means to offer them, how
to characterize the capabilities of different ser-

vices, and what the cost is of invoking them.
The management of very large knowledge
bases poses some fascinating research ques-
tions, including methods for handling global-

ly inconsistent but locally reasonable
knowledge, higher-level principles for orga-
nizing knowledge, and techniques for belief
revision as knowledge bases evolve over time.
As large knowledge bases come into widespread
use, they will need t:o be built, extended, and
used by a wider range of users. Because these
users will likely be less forgiving than aca-
demic researchers using products of their own
making, a number of questions arise concern-
ing presenting knowledge, browsing, query-
ing, and explaining.

Other relevant issues raised by Brachman

include the integration of multiple paradigms,
extensible representation systems, and effi-
ciency concerns. In addition, each of the four
working groups has questions that present
challenges to the research community.

The notion of translation implied by inter-
lingua raises a number of questions about
tools and methodologies for translation. As
the work on interlingua has progressed, a
much better understanding has grown about
the distinction between communication

codes and representation codes (these two
terms were introduced into the discussion by
Pat Hayes). A communication code captures
knowledge for the purposes of exchanging it
or talking about it, and a representation code
attempts to capture knowledge for the pur-
pose of supporting the efficient implementa-
tion of inference mechanisms. As the effort

proceeds, it is likely to spawn a great deal of
work on understanding and recording the
design rationale behind representation codes
to facilitate greater automation in translating
them into and out of communication codes.

A number of issues in representation lan-
guages remain as research topics. Belief has
already been mentioned. Others include
defaults and inheritance, negation, disjunc-
tion, metadescriptions, higher-order logics,

description of inference, predicate reification,
causality, and time.

External interfaces present a range of both
short- and long-term research issues. Exam-
ples include the verification of protocols for
asynchronous operation of multiple end user
applications with many knowledge bases, the
assessment of possible degrees of parallelism,
and deeper investigation into requirements
for supporting interactive user interfaces.
Longer-range issues include mechanisms for
specifying the quantity and quality of infor-
mation to be returned by a knowledge base in
response to a request, means for dealing with
uncertainty, and methods for optimizing the
performance of distributed systems.

Finally, the notion of shared, reusable
knowledge bases provides a tremendous
amount of grist for the research mill Most
obviously, researchers will be exploring ques-
tions about the content of specific reusable
ontologies for some time to come. In addi-
tion, there are a number of ancillary ques-
tions: How is consensus on a group ontology
best achieved? How can consensus be main-

tained as needs change over time? What
kinds of automated assistance and interactive

tools will be beneficial? How can we verify
compatibility with an ontology? How can we
support correspondence theories that allow
knowledge base developers to express and
reason about mappings between different
ontologies?

The efforts described in this article to devel-

op conventions for sharing and reuse repre-
sent the start--rather than the culmination--

of a large body of research activity. We believe
that this area is one in which conventions

will serve to focus and enable research, not
codify and terminate it.

Conclusion

Attempting to move beyond the capabilities
of current knowledge-based systems mandates
knowledge bases that are substantially larger
than those we have today. However, represent-
ing and acquiring knowledge is a difficult and
time-consuming task. Knowledge-acquisition

time is ripe to start building the infrastructure for"

r integrating al software at the knowledge level.
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tools and current development methodolo-
gies will not make this problem go away
because the root of the problem is that knowl-
edge is inherently complex and the task of
capturing it is correspondingly complex.
Thus, we cannot afford to waste whatever

knowledge we do succeed in acquiring. We
will be hard pressed to make knowledge bases
much bigger than we have today if we con-
tinue to start from scratch each time we con-

struct a new system. Building qualitatively
bigger knowledge-based systems will be possi-
ble only when we are able to share our
knowledge and build on each other's labor
and experience.

The time is ripe to start building the infras-
tructure for integrating AI software at the
knowledge level, independent of particular
implementations. Today, there is a significant
body of ongoing work in At and application
domains on pieces of the problem, such as

basic knowledge representation; knowledge-
acquisition tools; task-specific architectures;
and domain-oriented, multiuse models. What

is lacking is an integrating framework, the
means for describing, connecting, and
reusing knowledge-based technology.

Addressing these concerns will open the
doors to the development of much larger-

scale systems, structured in a fashion that
facilitates their development, maintenance,
and extension. Furthermore, it will eliminate

barriers to embedding AI components in
larger, mostly conventional software systems.
This approach will lead to a great expansion
in the range of applicability for AI technology,
which, in turn, will greatly enhance its utility
and significantly expand the commercial
marketplace.

The knowledge representation technology
that supports these goals will have four key
characteristics:

First, it will offer libraries of reusable
ontologies, that is, knowledge base frameworks
consisting of (1) formal definitions of the
terms that can be used to model a domain or

class of domains and (2) assertions that
govern the requirements and constraints for
creating valid models within a domain by
combining and relating terms and term
instances.

Second, it will offer powerful, expressive,
and efficient interpreters and compilers for
knowledge representation systems (knowledge
bases combined with inference mechanisms)

in which these ontologies are embedded.
These systems will likely be structured as ser-
vices oriented toward a client-server model of
interaction.

Third, it will provide system builders with
tools for translating between alternative rep-
resentation systems. These tools will enable
them to create efficient, optimized systems by
making choices about alternative implemen-
tations without losing the opportunity to
reuse representational work from other, dif-
ferent formalisms.

Fourth, it will embed these interpreters and
compilers in architectures that support com-
plete interoperability not just between multi-

ple knourledge-based systems but also with
conventional software systems. In particular,
there will be a convenient, standard applica-
tion programming interface and tight inter-
connection with databases.

This article attempted to articulate a vision
of the necessary knowledge representation
system technology and a path to achieving it.
It also argued that progress in this area will
dramatically change for the better the way
that knowledge-based systems are built and
the way they are perceived by their users.
Central to this vision is the notion of estab-

lishing an information infrastructure for pro-
moting the sharing and reuse of knowledge
bases in the development and application of
large, enterprise-level software systems.
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Building knowledge-based systems today usually en-
tails constructing a new knowledge base from scratch.
Even if several groups of researchers are working in
the same general area, such as medicine or electronic
diagnosis, each team must develop its own knowledge
base from scratch. The cost of this duplication of ef-
fort has been high and will become prohibitive as we
build larger and larger systems. Furthermore, lack of
methodology for sharing and communicating knowl-
edge poses a significant road-block in developing large
multi-center research projects such as DARPA/Rolm
Laboratory Planning and Scheduling Initative [21]. To
overcome these barrier and advance the state of the

art, we must find ways of preserving existing knowl-
edge bases, and sharing, reusing, and building on
them.

The Knowledge-Sharing Effort, sponsored by the De-
fense Advanced Research Projects Agency (DARPA),
The Air Force Office of Scientific Research (AFOSR),
the Corporation for National Research Initiative
(NRI), and the National Science Foundation (NSF), is
an initiative to develop the technical infrastructure to
support the sharing of knowledge among systems. [27]
The goal of this effort is to develop a technology that
will enable researchers to develop new systems by se-

lecting components from library of reusable modules
and assembling them together. Their effort will be fo-
cused on creating specialized knowledge and reasoners
specific to the task of their system. Their new sys-
tem would inter-operate with existing systems, using
them to perform some of its reasoning. In this way,
declarative knowledge, problem solving techniques and
reasoning services could all be shared among systems.
The reusable modules in the library them-selves will
benefit from refinements that are only possible through
extensive use. This would facilitate building larger

systems cheaply and reliably. The infrastructure to
support such sharing and reuse would lead to greater
ubiquity of these systems, potentially transforming the
knowledge industry.

The work in the Knowledge-Sharing Effort began with
the identification of the impediments to knowledge

sharing and corresponding needs for the development
of technology to overcome these impediments. Four
key areas were identified for the initial effort. They
are: (1) mechanisms for translation between knowl-
edge bases represented in different languages; (2) com-
mon versions of languages and reasoning modules
within families of representational paradigm; (3) pro-
tocols for communication between separate knowledge-
based modules, as well as between knowledge-based
systems and databases; and, (4) libraries of "ontolo-
gies," i.e., pre-fabricated foundations for application-
specific knowledge bases in a particular topic area.

A detailed discussion of the impediments, and an anal-
ysis of the issues that motivated us to focus on these
four types, appears in [27]. That article also describes
the working groups (comprised of researchers from
the DARPA AI community and other volunteers) that
were established to address these issues. The next four

sections describe the progress made by each of the four
working groups in addressing these issues through the
development of draft specifications, implementations
and experiments.

1 AN INTERLINGUA FOR
KNOWLEDGE INTERCHANGE

For a knowledge-based system to incorporateencoded

knowledge from a libraryor to interchangeknowledge

with another system, the knowledge must eitherbe
representedin the receivingsystem's representation

language or be translatable in some practical way into
that language. Since an important means of achiev-
ing efficiency in application systems is to use special-
ized representation languages that directly support the
knowledge processing requirements of the application,

we cannot expect a standard knowledge representa-
tion language to emerge that would be used generally
in application systems. Thus, we are confronted with a
heterogeneous language problem. We may, however, be
able to deal with that problem by developing a knowl-
edge interchange language that would be commonly
used as an interlingua for communicating knowledge



between computer programs.

Given such an interlingua, a sending system could
translate knowledge from its application-specific repre-
sentation into the interlingua for communication pur-
poses and a receiving system could translate knowl-
edge from the interlingua into its application-specific
representation before use. In addition, the interlingua
could be the language in which libraries would pro-
vide reusable knowledge bases. An interlingua eases
the translation problem in that without an interlingua
one must write N pairs of translators in order to com-

municate knowledge to and from N other languages.
With an interlingua, one need only write one pair of
translators into and out of the interlingua.

1.1 KIF - A KNOWLEDGE INTERCHANGE
FORMAT

The Interlingua Working Group, chaired by Richard
Fikes and Michael Genesereth, is attacking the hetero-
geneous language problem by developing and testing
a language for use as an interlingua called the Knowl-
edge Interchange Format (KIF)[16]. The group began
its work by observing that an interlingua needs to be

a language with the following general properties:

* A formally defined declarative semantics;

• Sufficient expressive power to represent the
declarative knowledge contained in typical appli-
cation system knowledge bases; and

• A structure that enables semi-automatic transla-

tion into and out of typical representation lan-

guages.

The working group then merged ongoing language de-
sign efforts to produce a preliminary version of the
KIF language which could be used as a straw man
interlingua in knowledge interchange experiments and
design discussions. Since then, the language has been
continually evolved and expanded based on feedback
from ongoing e-mail discussions, formal design reviews,
translation of example knowledge bases, and interop-
eration experiments.

KIF is an extended version of first order predicate

logic. The current 3.0 version of KIF has the following
features:

• Simple list-based linear ASCII syntax suitable for
transmission on serial media. For example, the
following is a KIF sentence:

(forall ?x (=> (P ?x) (0 ?x)))

• Modebtheoretic semantics with axiomatic char-

acterization of a large vocabulary of object, func-
tion, and relation constants.

• Function and relation vocabulary for numbers,
sets, and lists.

• Support for expression of knowledge about the
properties of functions and relations. Functions
and relations are included in the universe of dis-

course as sets of lists so that they can be argu-
ments torelations(e.g,transitive and one-one)

and functions(e.g.,inverse and range). In addi-
tion,a holds relationisincluded thatistruewhen

itsfirstargument denotes a relationthat has as'

a member the listconsistingofthe items denoted

by the remaining arguments. So, forexample, one
could definetransitivityas follows:

(<=> (transitive ?r)

(=> (holds ?r ?x ?y)

(holds ?r ?y ?z)
(holds ?r ?x ?z)))

• A sublanguage for defining objects, n-ary rela-
tions, and n-ary functions that enables augmenta-
tion of the representational vocabulary and spec-
ification of domain ontologies. Definitions can be
complete in that they specify an equivalent ex-
pression or partial in that they specify an ax-
iom that restricts the possible denotations of the
constant being defined. For example, the follow-
ing is a complete definition of the unary relation
bachelor:

(defrelation bachelor (?x) :=

(and (man ?x) (not (married ?x))))

and the followingisa partialdefinitionof a bi-

nary relationabove which specifiesthat above is
transitiveand holds only for "located objects":

(defrelation above (?bl ?b2)

:=> (and (located-object ?bl)

(located-obj act ?b2))
:axiom (transitive above))

• Support for expression of knowledge about knowl-
edge. KIF expressions are included as objects
(i.e., lists) in the universe of discourse, and func-
tions are available for changing level of denota-
tion. For example, the following sentence says
that Lisa has the same belief as John about the

material of which things are made:

(=> (believes john '(material ,?x ,?y))

(believes lisa '(material ,?x ,?y))

and the followingsentence says that every sen-

tence of the form (=> ¢ ¢) istrue:

(=> (sentence ?p) (true '(=> ,?p ,?p)))

• A sublanguage for stating both monotonic and
nonmonotonic inference rules. For example:

(<<= (flies ?x)
(bird ?x) (consia (flies ?X)))

A KIF reference manual describing the entire language
in detail is available through anonymous FTP from



hudson,stanford, edu[17]. The working group ex-
pects the current language design to remain relatively
stable and for future versions to be essentially exten-
sions to the existing language. Extensions under ac-
tive consideration include support for uncertain knowl-
edge and contexts, and additional support for default
knowledge.

KIF is intended to be a core language which is expand-
able by defining additional representational primitives.
For example, one can define a frame language vocabu-
lary of classes, slots, number restrictions, value restric-
tions, etc. (as Gruber has done in [19]) so that knowl-
edge can be expressed in a form directly analogous to
a frame language. Thus, given suitable definitions, one
could define a "guest meal" as being a meal in which
there is at least one guest and the food is gourmet as
follows:

(defrelation guest-meal (?m)
:=> (and (meal ?m)

(at-least-fillers ?m guest I)
(all-fillers ?m food

gourmet-food)))

1.2 KNOWLEDGE INTERCHANGE
EXPERIMENTS USING KIF

The problems involved in interchanging knowledge
bases are not yet well understood, and there is open
debate as to whether a generally useful interlingua can
be specified. The Interlingua Working Group is at-
tempting to inform that debate by developing KIF as
a candidate interlingua and by promoting knowledge
interchange experiments designed to substantially test
the viability and adequacy of KIF as an interlingua.
Several small scale experiments have been conducted
thus far and multiple projects are underway to build
and test KIF translators. These activities, though
still in preliminary stages, have already been very pro-
ductive in identifying issues that need to be resolved

and technology that needs to be developed in order for
knowledge interchange to be a practical reality. We
describe three examples of such activities below.

Ramesh Patil built translators to an early version
of KIF from CLASSIC [4] and from LOOM [22].
He then used those translators to produce KIF ver-
sions of simple CLASSIC and LOOM knowledge bases.
As expected, such translation experiments highlighted
weaknesses in KIF and motivated evolution of the

language. In general, producing KIF translations of
a wide range of sample knowledge bases is an effec-
tive means of evaluating the expressive adequacy of
KIF and focusing its continuing development. Build-
ing the translators themselves does not appear to be

problematical. The primary issue is whether KIF has
sufficient expressive power to represent the declarative

knowledge expressible in the source language.

Translating knowledge out of KIF is in general an in-
tractable problem because any given proposition can
be expressed in KIF in many equivalent but syntacti-
cally different forms and the recognition grammar for
a target language will only be able to recognize some
subset of those forms. The translation task, therefore,
involves applying equivalence preserving rewrite rules.
to transform unrecognizable sentences into recogniz-
able forms. Despite the worst-case complexity of logi-
cally complete translation, effective translation may be
achievable in most situations by logically incomplete
techniques combined with interactive direction from
the user. To explore that hypothesis, Fikes and Van
Baalen are building a translator development "shell"
which will contain a grammar-based recognizer, a goal-
directed rewrite rule interpreter, a library of general-
purpose rewrite rules, facilities for hand translation of
problematic sentences, etc. [12]. Initial versions of the
basic components of that shell have been implemented
and have been used to successfully translate simple
KIF knowledge bases into CLASSIC.

A knowledge interchange capability is important both
to enable incorporation of knowledge into a knowledge-
based system (e.g., during system development) and to
enable interoperatio, of knowledge-based systems so
that they can cooperatively perform tasks and solve
problems. KIF is being used as the knowledge level
inter-agent communication language in multiple inter-
operation experiments, including those conducted by
Mike Genesereth using the Designworld system [15]
and those being conducted by participants in the Palo
Alto Collaborative Testbed (PACT).

Designworld is an automated prototyping system for
small scale electronic circuits built from standard parts
(TTL chips and connectors on prototyping boards).
The design for a product is entered into the system
via a multi-media design workstation; the product is
built by a dedicated robotic cell; and, if necessary, the
product, once built, can be returned to the system
for diagnosis and repair. The system consists of eigh-
teen processes on six different machines. Each of the
eighteen programs is implemented as a distinct agent
that communicates with its peers via messages in a
KQML-Iike Agent Communication Language (ACL)
that uses KIF as the "content" language.

PACT is a laboratory for exploring the use of knowl-
edge sharing technology and agent-based system inte-
gration architectures to support concurrent engineer-
ing. Participants include research groups at Stanford
University, Lockheed AI Laboratory, Hewlett-Packard
Laboratories, and Enterprise Integration Technologies.
The initial experiments integrated four preexisting

concurrent engineering systems into a common com-
putational framework and explored engineering knowl-
edge exchange in the context of a distributed simula-
tion and simple incremental redesign scenario [9]. In
those experiments, each of the individual systems was



usedto modeloneor morecomponents of an exam-
ple programmable electro-mechanical device, a small
robotic manipulator. The systems interact via soft-
ware agents which use KQML as the "performative"
language and KIF as the "content" language during
knowledge interchange.

Although these experiments have not yet placed severe
demands on KIF as an interlingua, KIF successfully
provided what was needed, namely a clearly specified
logical sentence language for interchange of assertions,
queries, and simulation inputs and outputs.

2 THE KNOWLEDGE

REPRESENTATION SYSTEM

SPECIFICATION

Even within a single family of knowledge represen-
tation systems (e.g. KL-ONE) minor differences
in syntax and semantics between systems pose sig-
nificant barriers to knowledge sharing. The goal of
the Knowledge Representation System Specification

(KRSS) group is to develop common specifications for
the representational component of families of knowl-
edge representation systems. These specifications will
help facilitate the transfer of collections of knowledge
between knowledge representation systems in the same
family, by reducing the representational differences
among systems in the family. The intent of the group
is to produce, by-and-large, descriptive specifications,
although reconciliation of some syntactic differences
will almost certainly be required.

Specifications produced by the group will concentrate
on the representational components of the family of
knowledge representation systems. Thus, they will
provide a complete definition of the representation lan-
guage underlying the family, but will not include a
complete definition of the interface functions that are
required in a useful knowledge representation system.
Instead the specifications will only define a minimal in-

terface, one that is sufficient to create knowledge bases
and query them in limited ways. Also, specifications
will completely ignore user-interface issues.

These specifications will definitely not be interlinguas.
The representation formalism in the specifications will

be specific to the family of representation systems un-
der consideration, and will not be general-purpose rep-
resentation logics. The specifications also have to be
concerned with the computational properties of the

formalism they define (i.e., how hard inference in the
formalism is), as the aim of the group is to specify
knowledge representation systems, and not just ab-
stract formalisms.

known as frame-based description languages, termino-
logical logics, etc.). These systems include BACK [31],
CLASSIC [6], KRIS [2], and LOOM [22]. This group
of systems was chosen partly because there is a large
number of systems that are based on description log-
ics (see above), partly because there was already some
interest in the community of developers of such sys-
tems for a common specification [1], partly because'
many of the people in the initial group gathered to-
gether at the start of the DARPA Knowledge Sharing
Initiative were working with such systems, and partly
because such systems have a formal basis that is read.
ily amenable to a well-defined specification. There has
also been considerable study of the formal properties
of reasoning in systems based on description logics.
This includes studies of how reasoning should proceed
in such systems [26] and the computational complex-
ity and decidability of reasoning in description logics
[5, 25, 10, 30]. The presence of such a large body of
formal work makes the specification process much eas-
ier.

Although there is a common background for all knowb
edge representation systems based on description log-
ics, there is surprising variance in several dimensions
in the systems. First, different systems have different
input syntaxes. One goal of the initial KRSS effort
is to minimize differences in this dimension. Second,
different systems have different interfaces, both func-
tional and user interfaces. Another goal of the initial
KRSS effort is to minimize differences in the portion of
the functional interface used to construct and directly
query knowledge bases. However, the rest of the inter-
faces of the various systems will not be incorporated
into the specification, as it is outside the goals of the

KRSS group.

The main difference between the various systems is
that they take different positions in the trade-offs
among expressive power, completeness of inference,
and resource consumption. Some systems try to be
as complete as possible in a less-expressive descrip-

tion logic while consuming as few resources as possible,
trading off expressive power for computational bene-
fits. Some systems implement complete inference in a
moderately-expressive but decidable description logic,
trading off possible resource consumption for better
expressive power. Some systems implement only par-
tial inference in an expressively-powerful description
logic, trading off completeness for expressive power.

Many points in this set of trade-offs are reasonable, so

a specification has to allow for both the current set of
trade-offs, and also for possible future trade-offs. This

means that the specification will not be a complete
specification nor even a nearly complete specification.

The initial effort of the KRSS group is the development
of a specification for knowledge representation systems
based on what are now called description logics (also

The approach that has been taken in the specification
is to define an expressively powerful description logic,

including both a syntax and a semantics, incorporat-



ing those constructs whose meaning has been gener-
ally agreed upon by the community. Along with the
description logic is a set of interface functions that al-
low for the construction, manipulation, and querying
of description-logic knowledge bases. These functions
allow

* the formation of descriptions and sentences;

• the definition of concepts and roles from descrip-
tions;

• the assertion of sentences, including ground facts
about individuals and simple rules about con-
cepts;

• the creation of individuals and reasoning about
their identity;

• the making of local closed-world statements;

• the making of default statements about instances
of concepts;

• the retracting of previously-told assertions; and

• the querying of knowledge bases.

The non-query functions are defined by their effect on
an abstract knowledge base, which is a collection of
statements in the description logic. The results of the

query functions are (mostly) defined by semantic rela-
tionships between the knowledge base and the query.

Because it is impossible to efficiently perform infer-
ence in the full description logic, conforming systems
are not required to completely implement it. Conform-
ing systems are free to recognize only a subset of the
syntax of the logic, and need not even perform com-
plete reasoning in the subset that they do recognize.
However, such systems must use this logic as the ideal
meaning of their knowledge bases, and must perform
"sound" reasoning with respect to the logic.

Conforming systems are not completely free in what
portion of the logic they choose to address. There is
a core portion of the logic that all conforming systems
are required to implement; in this way a minimal com-
petence is required for all conforming systems. The
core is not just a syntactic subset of the full logic--

complete inference on even very minimal subsets of the
logic is very difficult--but is instead a set of constructs
that must be recognized, along with a set of inferences
that must be performed on these constructs.

Most of the debate on the specification has involved
the details of this core. The constructs to include in

the core, the inferences to perform on them, and how

to specify these inferences have all been subjects of de-
bate. This was to be expected, as the specification of

the core is where the specification is making decisions
on matters that have been decided in different ways by

different systems. Devising a core that is both reason-
able and non-trivial is an interesting exercise in how
to balance various representation and implementation
concerns.

There is now (July 1992) a second draft of the com-
plete specification that has been distributed to inter-
ested parties. Some changes still need to be made to
this draft. First, formal work in description logics has
advanced, and should be incorporated into the specifi-

cation. Second, there are portions of the draft, partic-
ularly in the inferences required in the core, that are
objectionable to some parties. By September 1992,'
there should be a third draft prepared and discussed,
and by the end of October 1992 a final version of the
specification should be available. Also, a method for
demonstrating compliance with the specification will
be developed.

Future work in the K1LSS group effort on description-
logic based systems will then consist of augmenting
the specification as new formal work on description
logic produces relevant results and as new implemen-
tation techniques make it possible to extend the core.
Also, other families of knowledge representation sys-
tems may be given the same treatment, provided that
developers are interested.

3 KNOWLEDGE QUERY AND
MANIPULATION LANGUAGE

(KQML)

The External Interfaces working group was originally
charged with addressing the general problem of defin-
ing standard high-level interfaces for knowledge repre-
sentation systems. This was seen as including such di-
verse interfaces as those to other KR systems, DBMSs,
active sensors, and human users. Over the past two
years, this working group has focused on and experi-
mented with a somewhat narrowed and more focused

problem - designing a common high-level language
(KQML) and associated protocol which can be used
by software systems for the run-time sharing of infor-
mation and knowledge. This section briefly describes
the current status of the effort to specify KQML and

experiment with its use in several testbeds.

3.1 OVERVIEW

The Knowledge Query and Manipulation Language
(KQML) is both a message format and a message-
handling protocol to support run-time knowledge shar-

ing among agents. KQML can be used as a language
for an application program to interact with an inteb
ligent system or for two or more intelligent systems
to share knowledge in support of cooperative problem
solving. KQML focuses on an extensible set of perfor-
matives, which defines the permissible operations that

agents may attempt on each other's knowledge and
goal stores. The performatives comprise a substrate on
which to develop higher-level models of interagent in-
teraction such as contract nets and negotiation [8, 33].
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Figure I: KQML expressionscan be thought of asconsisting
of a content expressionencapsulated in a message wrapper
which is in turn encapsulatedin a communication wrapper.

In addition, KQML provides a basic architecture for

knowledge sharing through a special class of agent
called communication -facilitators. These agents co-
ordinate the interactions of other agents by providing
such functions as:

• identification of other agents with which to com-
municate both explicitly via "names" or "ad-
dresses" or implicitly via declared topics of inter-
est or capabilities,

• maintaining registration databases of knowledge
services offered and sought by agents,

• communication services (e.g., forwarding informa-
tion from one agent to other interested agents),
and

• content translation to bridge semantic and onto-
logic differences between end agents.

These functions are embodied in special performatives

(which take messages as arguments), and in the way
that facilitators treat messages received from applica-
tion agents.

The ideas which underly the evolving design of KQML
are currently being explored through experimental

prototype systems which are being used to sl_pport
two testbeds: the Palo Alto Collaborative Testbed

(PACT) [9] which is focused in the concurrent engi-
neering domain, and the DARPA/Rome Planning Ini-
tiative (DRPI) which deals with military transporta-
tion planning [13].

3.2 KQML EXPRESSIONS ARE LAYERED

KQML expressions consist of a content expression en-
capsulated in a message wrapper which is in turn en-
capsulated in a communication wrapper, as shown in
Figure 1. Thus the language is thought of as being
divided into three layers: content, message and com-
munication. The content layer contains an expression
in some language which encodes the knowledge to be
conveyed. The format of this expression is unimpor-
tant to KQML; it can carry any type of content ex-
pressed in any representation language which follows
some general syntactic constraints (currently, the con-

tent expression must be an s-expression). However,
there are emerging conventions for knowledge repre-
sentation (e.g., Interlingua, KIF [17], etc) and stan-
dards for persistent objects (e.g., the OMG Object Re-
quest Broker) which may prove to be very valuable in
the near future.

The primary purpose of the message layer is to identify
the speech act or performative that the sender attaches'
to the content, such as an assertion, a query or a com-
mand, and any of a small set of qualifiers that may be
appropriate to that performative. In addition, since
the the content is opaque to KQML, this layer also in-
cludes optional features describing the content's lan-
guage, the ontology it assumes and a descriptor nam-
ing a topic within the ontology. These features make
it possible for the protocol implementation to analyze,
route and properly deliver messages even though their
content may be inaccessible.

The final communication level adds a second layer of

features to the message which describe the lower level
communication parameters, such as the identity of the
sender and recipient, a unique identifier associated
with the communication and whether the communi-

cation is meant to be synchronous or asynchronous.
These are used by the network layer which provides
reliable transfer of bytes between processes on a net-
work.

3.3 KQML PERFORMATIVES

The message layer is used to encode a message that one
application would like to have transmitted to another
application and forms the core of the language, de-
termining the kinds of interactions one can have with
a KQML-speaking agent. It can be thought of as a
"speech act layer", since an important attributes to
specify about the content is what kind of "speech act"
it represents - an assertion, a query, a response, an

error message, etc.

Structure. Conceptually, a KQML message consists

of an operator or per formative, its associated argu-
ments which constitute the real content of the message
and a set of optional arguments which describe the
content in a standard, language-independent manner.
For example, a message representing a query about the
location of an particular airport might be encoded as:

(ask (geoloc lax (?long ?lag))
: number_answers

: ontology dxpi_geo)

In this message, the KQML performative is ask,
the content (i.e., knowledge being sought) is
(geoloclaz(?long?lat)), the number of answers re-
quested is 1, the language in which the content is ex-

pressed is (by default) ki,f and the ontology to be as-
sumed is that named by the token drpigeo. The same

''4 " '



general query could be conveyed in using standard Pro-
log as the content language in a form that requests the
set of all answers as:

(ask "gsoloc(lax, (Long,La¢))"
:lemguago sta.ndard_Prolog
:numbor_ansgsrs all

:ontology drpi_geo)

Semantics. It is our intention to allow the set of

KQML performatives to be extensible. We will iden-
tify a core set of performatives that will have a well
defined meaning. An KQML-speaking agent need not
implement or handle all of the performatives in this
core, but for those it does, it must adhere to the stan-
dard semantics. Moreover, it is our goal to provide a
standard mechanism by which one can define the se-
mantics of new performatives, allowing the set to be
extended. The semantics of the core performatives
will be defined in terms of a smaller set of primitive
performatives. The semantics of these primitive per-
formatives are defined with respect to a simple and
general model of agents in which each agent as a store
of information structures (i.e., "belief" like items) and
a store of goals structures (i.e., items which may effect
the agent's future behavior).

Primitive Performatives. We are currently work-
ing with a set of four primitive performatives from
which we believe the core and various interesting ex-
tensions can be defined. These four primitives pro-
vide operators to present an agent with items to add
(ADVISE) and remove (UNADVISE) from its in-
formation store and to add (ACHIEVE) and remove
from (FORGET) its goal store. These four perfor-
matives are primarily used as a means to specify the
semantics of the larger core performatives.

Core Performatives. The core set ofperformatives
is expected to include several dozen operators which
most KQML-speaking agents will support. If an agent
accepts a message with a core performative, it must
adhere to its agreed upon semantics. Some of these
performatives will accept optional arguments which
serve as qualifier. Figure 2 shows some examples of
performatives that are in the current specification.

Messaging via Facilitators. Any substantial cob
lection of interacting agents will require some struc-
ture on information flow [20, 28, 32]. For this reason,
KQML introduces a class of communication facilitator
agents that help manage the message traffic among ap-
plication agents. Facilitator agents can route perfor-
matives to appropriate agents (MONITOR performa.
tives in particular), record the performative-processing
abilities of new agents, and bridge the capabilities of
superficially incompatible agents (through buffering,
translation, and problem decomposition). These fa-
cilitation functions will be reflected in new core per-

• (ASSERT P) - Add P to the agent's information
store, performing whatever reasoning the agent
can perform.

• (RETRACT P) - Remove P from the agent's
information store if present, signalling an error if
not present and performing whatever reasoning
the agent can perform.

• (ASK P) - Query the agent's information store
to find answers matching query P. The number

of answers returned is governed by an optional
argument.

• (GENERATOR P) - Reply with a generator
that the recipient can use to elicit a stream of
answers to the query P.

• (MONITOR P) - Modify the agent's goal store
to cause it to inform the sender whenever a sen-

tence matching P becomes true.

Figure 2: These are a few of the core KQML performatives.

formatives, e.g., (FORWARD agent-name message)
and (DISTRIBUTE message).

Software Architecture. As Figure 3 shows, a typ-
ical KQML-speaking agent will be built using two
reusable pieces - an interface between the agent's sys-

tem language (e.g., LOOM or Prolog) which ties com-
munication actions to system actions, and a. router
which handles the low-level communication chores nec-

essary to talk to other agents. These might all be done
within a single process (e.g., in Lisp) or might include
several processes (e.g., the router might be done in C
or Perl).

3.4 STATUS AND OPEN ISSUES

The ideas which underly the evolving design of KQML
are currently being explored through experimental
prototype systems which are being used to support

Figure 3: A typical KQML-speaking agent will be built using
two reusable pieces - an interface between the agent's system
language (e.g., LOOM or Prolog) which ties communication
actions to system actions, and a router which handles the low-
level communication chores necessary to talk to other agents.



Figure 4: KQML will be used as communication language
among the various agents which make up the DRPI testbed.
It will be used, for example, to support the interchange of
knowledge among the planner, the plan simulator, the plan
editor and the DRPI knowledge server which is the reposi-
tory for the shared ontology and access point for common
databases.

two testbeds: the Palo Alto Collaborative Testbed

(PACT) [9] which is focused in the concurrent engi-
neering domain, and the DARPA/Rome Planning Ini-
tiative (DRPI) which deals with military transporta-
tion planning.

KQML use in PACT. The Palo Alto Collabo-
rative Testbed (PACT) uses KQML as its medium
for agent interaction in support of concurrent en-
gineering. PACT participants modified several ex-
isting knowledge-based engineering systems to speak
KQML and thereby exchange design and manufac-

turing knowledge of mutual interest. (For example,
the mechanical modeler sends the controls modeler

knowledge regarding the dynamics of the design; the
power modeler sends the manufacturing process plan-
ner knowledge regarding a motor replacement.) These
agents find each other in part through facilitators,
which handle message forwarding, content-based rout-
ing, and simple format translations.

KQML use in DRPI. The DARPA/Rome Plan-
ning Initiative is using KQML as the communication
language among the various agents that make up the
testbed and feasibility demonstrations. Figure 4 shows
KQML being used, for example, to support the in-

terchange of knowledge among the planner, the plan
simulator, the plan editor and the DRPI knowledge
server, which is the repository for the shared ontology

[21] and access point to common databases through
the Intelligent Database Interface [23, 29]

Open Issues. The design of KQML has continued
to evolve as the ideas are explored and feedback is
received from the prototypes and the attempts to use
them in real testbed situations. We mention here a few

of the important issues that we expect to be addressed

in the coming year.

The core set of performatives is still undergoing re-
vision as we experiment with its use. This set needs
to be stabilized and well specified. In particular, we
need to refine the model of what a communication fa-

cilitator is and what services it might offer so that we
develop a good set of performatives to support their.
effective use.

A method for defining new extensions to the core set
needs to be worked out. This includes a method for

defining them for humans as well as a method to allow
one agent to define a new performative to another.

The basic model of a knowledge representation agent
that we have been working with is quite simple. One
of several extensions that may be needed, for example,
is a mechanism to define contexts within an agents
information and goal stores.

An important part of KQML will be the protocols as-
sociated with the different performatives. There are

some general issues which go beyond defining the se-
mantics of particular performatives that must be ad-
dressed. These general protocols include such things
as refusing to accept a message, error reporting, secu-
rity, and transaction oriented processing.

4 SHARED, REUSABLE

KNOWLEDGE BASES

The SRKB Working Group (Shared, Reusable Knowl-

edge Bases) of the DARPA Knowledge effort is work-
ing on the problem of sharing the content of formally
represented knowledge. Sharing content requires more
than a formalism (KIF) and communication protocol
(KQML). Of course, understanding the nature of what
needs to be held in common between communicating
agents, or between the author of a book and its reader,
is a fundamental question for philosophy and science.
The SRKB group is focusing on the practical prob-
lem of building knowledge-based software that can be
shared and reused as off-the-shelf technology. The
charter of the group is to identify the technical bar-
riers to the sharing and reuse of formally represented
knowledge by AI programs, and to provide a forum for
experimentation with possible approaches.

4.1 STRATEGY: COMMON ONTOLOGIES
AS A SHARING MECHANISM

The strategy isto focus on common ontology as the

sharingmechanism [27,18].What isa common ontol-

ogy? Every knowledge-based system isbased on some

conceptualizationof the world: those objects, pro-
cesses,qualities,distinctions,and relationshipsthat

matter for performing some task. A program (or

itsprogrammer) makes ontologicalcommitments to a

conceptualizationby embodying these concepts, dis-



tinctions, etc. in a formal representation and using
knowledge formulated in that representation during
problem solving. By common ontology we mean
an explicit specification of a the ontological commit-
ments of a set of programs. Such a specification is
an objective description--interpretable outside of the
programs--of the concepts and relationships that the
programs assume and use when interacting with other
programs, knowledge bases, and human users.

Operationally, a common ontology can be specified
as a set of definitions of representational terms used
to construct expressions in a knowledge base, such
as classes, relations, slots, and object constants. To
make a common ontology shareable, the definitions
should consist of human-readable text and machine-

enforceable, declarative constraints (i.e., axioms) on
the well-formed use of the terminology. The set of
terms in a common ontology need not include all
the terms used internally in participating programs.
Rather, the shared vocabulary defined in a ontol-
ogy is used for specifying the coupling between pro-
grams and knowledge bases (at design time) and for
knowledge-level communication among agents (at run
time). We hope to enable large-scale sharing and reuse
of knowledge bases and knowledge based systems by
making common ontologies available as open specifi-
cations, much like interchange formats and communi-
cation protocols.

The initial activities of the working group have been to
explore the research issues in knowledge sharing, and
to identify areas where it might be practical and useful
to specify common ontologies. The Summer Ontology
Project, held at Stanford in 1990, studied the collabo-
rative, multi-disciplinary development of reusable on-
tologies for describing electromechanical devices and
their designs. One outcome was the observation that
several approaches to device modeling, from digital cir-

cuit modeling to rigid body dynamics, seemed to make
commitments to lumped-element models of physical
devices. In a lumped-element model, the behavior of a
device is described in terms of values of functions (state
variables) that map a single independent variable (e.g.,
time, but not space) to physical quantities (position,
force, etc.). A preliminary ontology was proposed to
formalize these concepts.

In March of 1991, the SRKB group met at Pajaro
Dunes to characterize some of the research issues.

There was some controversy about whether it is pre-
mature to "standardize" ontologies of any sort, espe-
cially those designed to be comprehensive over tasks
and domains. Instead, a series of collaborative, grass-
roots experiments were proposed, in which two or
more research groups identify potential candidates for
knowledge sharing.

In the past year, several collaborations have begun,
and a set of ad hoe subgroups have been formed
to study these ontological niches. Each subgroup is

tasked with identifying, collecting, making available,
and analyzing ontologies for knowledge sharing. We
will describe the efforts of these groups within a frame-
work of models of sharing and reuse.

4.2 MODELS OF KNOWLEDGE SHARING
AND REUSE

Three models of sharing and reuse are being explored,
and in each, common ontologies play an enabling role.

First is the library model, in which bodies of for-
mally represented knowledge are available as off-the-
shelf products, like books in a library. In this model,
knowledge bases are designed artifacts, and the role of
SRKB to help make them available and reusable.

Two ad hoc subgroups are currently active within the
library model of sharing. One is an effort by repre-
sentatives of projects in qualitative physics to spec-
ify a common language for model fragments. Model
fragments are conceptual building blocks for programs
that formulate and assemble engineering models of de-
vice behavior, using techniques such as compositional
modeling [11]. For example, idealized components
such as resistors and physical processes such as liq-
uid flow are represented by model fragments, which
are composed to produce simulation models of com-
plete systems. The language under development is a
unification of model formulation and simulation sys-
tems such as QPE, DME, and QPC, and should enable
a community library of model fragments that can be
directly executed by these systems. The axiomatic se-
mantics of the language will be expressed in KIF, and
the ontological commitments of these programs will be
specified as an ontology.

A second subgroup, following up on the Summer On-
tology Project, is developing a family of ontologies for
specifying various styles of engineering modeling. It is
formalizing the classes of algebras used in constraints
(e.g., with or without differential equations; quali-
tative operators), the assumptions underlying com-
ponent/connection topologies, and the various styles
of dynamics analysis (e.g., Newtonian, LaGrangian,
Kane's method). This work is complementary to the
composition modeling effort; any of these styles of
modeling can be formulated using the model fragment
language.

A preliminary finding is that the ontological commit-
ments of a given approach to modeling may be fac-
tored into separate ontologies. These ontologies form
an inclusion hierarchy, where each ontology can inherit
(by set inclusion) the definitions of included ontolo-
gies. For example, the original proposal for a lumped-
element ontology has since been divided into sev-
eral ontologies, including continuous-state-space (com-
mits to describing behavior using state variables) and
hierarchical-component-assembly (objects are struc-
tured into components related by connections and



part-of relations). To specify how state variables are
associated with components, one writes a third ontob
ogy that includes the other two, adding a few addi-
tional constraints. To support this sort of modular
partitioning of ontologies, the interlingua committee
is considering context mechanisms such as Cyc's mi-
crotheories.

A second mode of sharing and reuse under investiga-
tion is the software engineering model. A standard
approach to making software reusable is to decompose
complex programs into modular pieces, and to provide
a formal specification of the inputs, outputs, and func-
tion computed by each piece. Knowledge-based sys-
tems are like other software in this respect, except that
they operate on a special input called the "background
knowledge base" or "domain theory." Reusable mod-
ules are designed so that the same code can be used
on several knowledge bases. However, to write these
knowledge bases the developer needs to understand
the ontological assumptions and commitments made
in the code. An ontology that defines the vocabulary
with which to write the knowledge bases can help de-
termine which software module to use on a given prob-
lem, how to provide it the necessary domain knowl-
edge, and whether the knowledge base meets the input
requirements of the software.

A significant effort is under way in the knowledge ac-
quisition community to formally characterize the tasks
being performed by knowledge based systems, and to
design modular problem-solving methods that can be
combined to address these tasks [24]. For example,
complex, amorphous tasks such as diagnosis and plan-

ning have been decomposed into more generic sub-
tasks that can be solved with reusable methods such

as simple classification, abductive assembly, and va-
rieties of constraint satisfaction. An subgroup led by
Mark Musen is studying ways to describe these tasks
and methods, and has begun to define ontologies that
specify the input and output assumptions of reusable
methods.

A second subgroup, headed by Ed Hovy and Doug
Skuce, is identifying and analyzing the comprehen-
sive, top-level ontologies that are intended to be gen-
eral across domains and tasks. A motivating applica-
tion for such ontologies is natural language process-
ing. NLP techniques needs a way to couple to do-
main knowledge bases (for something to talk about)
without committing the programs to particular sub-
ject matter areas. For example, the Penman language
generation system's "Upper Structure _ ontology [3] di-
vides the world up according to the major type distinc-

tions made in English and German (Objects of various
types, Processes and Relations of various types, Qual-
ities, etc.). A developer customizes Penman to a par-
ticular application domain by defining the domain's
concepts as specializations of the appropriate Upper
Structure concepts. As a result, the domain concepts

inherit the necessary linguistic annotations from their
Upper Structure ancestors. In general, such top-level
ontologies can be viewed as a software reuse mecha-
nism for programs parameterized by large knowledge
bases.

Another subgroup is looking at ontologies that spec-
ify semiformal representations of decision making and.
design rationale (Jeff Bradshaw, Jin Tae Lee, and
Charles Petrie). In semiformal rationale support sys-
tems, users organize text describing design decisions in
to a hypertext document that supports a fixed vocab-
ulary of node types (classes) and link types (relations).
For example, in the glBIS ontology [7], decisions are
described in terms of issues, arguments, and positions,
and these node types are linked by relations such as
supports and objects-to. The documents structured by
these terms are called semiformal or semistructured,
since only the node and link types are machine inter-
pretable and the contents of the nodes are not formal-
ized. Several methodologies for developing semiformal
documents, and tools to support them, are based on
these ontologies of node and link types.

A third kind of sharing and reuse is the reference
model, typically used to define an integration frame-
work for a family of application programs. A reference
model defines the concepts in a domain and/or prob-
lem area that are common to the set of application
tasks. For example, a reference model for digital cir-
cuits includes a formalism for describing the netlist,
which is a representation of circuit topology. The ref-
erence model ontology commits the participating tools
to the existence of shared objects such as components
connected by ports in a netlist; this is necessary to
enable tools to exchange data.

An international standards effort called PDES/STEP

is working on a family of reference-model ontologies
for product data, starting by defining primitives for

geometry and working toward high level descriptions
of behavior and functionality. The DARPA knowl-
edge sharing effort is exploring avenues for collabora-
tion with the PDES organization.

Within the SRKB working group, ad hoe subgroups
are studying reference-model ontologies for user in-
terface toolkits (Jim Foley and Bob Neches), man-
ufacturing enterprise models (Mark Fox), and plan-
ning/scheduling (Don McKay, Masahiro Hori).

4.3 TECHNICAL SUPPORT FOR
ONTOLOGIES - ONTOLINGUA

Each of the subgroups of the SRKB are charged with
identifying and collecting ontologies, and making them
available in a form amenable to analysis and possible
reuse. However, existing ontologies are either incom-
pletely formalized or written in a specific knowledge
representation tool. To address this problem, a system
called Ontolingua has been developed [19]. Ontolingua



is a mechanism for defining ontologies portably, that
is, independent of specific representation systems. It
allows the definition of classes, relations, and distin-
guished objects using KIF sentences, and translates
these definitions into several implemented representa-
tion systems.

Ontolingua's design demonstrates the use of a com-
mon ontology to facilitate sharing and reuse (in this
case, of ontologies). Translation from a very expressive
language (KIF) into restricted languages is inherently
incomplete. Therefore, Ontolingua supports a subset
of legal sentences that can be translated into a class
of commonly-used representation systems: the object-
centered or frame-based systems. These implemented
systems commit to particular ways of organizing and
specifying knowledge about objects, such as inheri-
tance hierarchies and slot descriptions. These ontolog-
ical commitments are captured in the Frame Ontology,
which defines a vocabulary for describing classes, bi-
nary relations, and second-order relationships among

them (e.g., subclass, instance, class partitions, slot-
value restrictions). Ontolingua recognizes the use of
Frame Ontology concepts in KIF sentences, and trans-
lates them into the special syntax of each target rep-
resentation system. The Frame Ontology, on top of
a syntactically restricted KIF, defines a language for
portable ontologies. The Ontolingua software opera.
tionalizes the language by providing automatic trans-
lation into implemented representation systems.

5 SUMMARY

Moving beyond the capabilities of current knowledge-
based systems will require development of knowledge
bases that are substantially larger than those we have
today. It will require knowledge-based systems to

communicate with other knowledge-based systems and
conventional software systems in carrying out their
functions. Meeting these challenges on a broad scale
will require development new knowledge-sharing tech-
nology and shared conventions. The on-going efforts
in the Knowledge Sharing Effort represent steps in this
directions. The efforts underway are neither complete
nor comprehensive - they represent an initial first steps
that will result in valuable experience and understand-
ing, will identify shortcomings in current methods and
point to new research directions, will encourage others
to focus on solving problems encountered in knowl-

edge sharing, to explore alternatives and to enhance
the state of the art.
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Abstract: Knowledge Interchange Format (KIF) is a computer-oriented language for

the interchange of knowledge among disparate programs. It has declarative semantics (i.e.

the meaning of expressions in the representation can be understood without appeal to

an interpreter for manipulating those expressions); it is logically comprehensive (i.e. it

provides for the expression of arbitrary sentences in the first-order predicate calculus); it

provides for the representation of knowledge about the representation of knowledge; it

provides for the representation of nonmonotonic reasoning rules; and it provides for the

definition of objects, functions, and relations.
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Chapter 1

Introduction

Knowledge Interchange Format (KIF) is a formal language for the interchange of

knowledge among disparate computer programs (written by different programmers, at

different times, in different languages, and so forth).

KIF is not intended as a primary language for interaction with human users (though

it can be used for this purpose). Different programs can interact with their users in

whatever forms are most appropriate to their applications (for example frames, graphs,

charts, tables, diagrams, natural language, and so forth).

KIF is also not intended to be an internal representation for knowledge within com-

puter programs or within closely related sets of programs (though it can be used for this

purpose as well). Typically, when a program reads a knowledge base in KIF, it converts

the data into its own internal form (specialized pointer structures, arrays, etc.). All com-

putation is done using these internal forms. When the program needs to communicate

with another program, it maps its internal data structures into KIF.

The purpose of KIF is roughly analogous to that of Postscript. Postscript is com-

monly used by text and graphics formatting programs in communicating information

about documents to printers. Although it is not as efficient as a specialized represen-

tation for documents and not as perspicuous as a specialized wysiwyg display, Postscript

is a programmer-readable representation that facilitates the independent development of

formatting programs and printers. While KIF is not as efficient as a specialized represen-

tation for knowledge nor as perspicuous as a specialized display (when printed in its list

form), it too is a programmer-readable language and thereby facilitates the independent

development of knowledge-manipulation programs.

The definition of KIF is highly detailed. Some of these details are essential; others

are arbitrary. The following general features are essential in the definition of KIF.

1. The language has declarative semantics. It is possible to understand the meaning of

expressions in the language without appeal to an interpreter for manipulating those

expressions. In this way, KIF differs from other languages that are based on specific

interpreters, such as Emycin and Prolog.

2. The language is logically comprehensive - it provides for the expression of arbitrary

sentences in predicate calculus. In this way, it differs from relational database lan-

guages (many of which are confined to ground atomic sentences) and Prolog-like lan-

guages (that are confined to Horn clauses).

3. The language provides for the representation of knowledge about the representation of

knowledge. This allows us to make all knowledge representation decisions explicit and

permits us to introduce new knowledge representation constructs without changing

the language.

In addition to these hard criteria, KIF is designed to maximize in a joint fashion the

following somewhat softer measures as well (to the extent possible while satisfying the

preceding criteria).
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1. Translatability. A central operational requirement for KIF is that it enable practi-

cal means of translating declarative knowledge bases to and from typical knowledge

representation languages.

2. Readability. Although KIF is not intended primarily as a language for interaction with

humans, human readability facilitates its use in describing representation language

semantics, its use as a publication language for example knowledge bases, its use in

assisting humans with knowledge base translation problems, etc.

3. Useability as a representation language. Although KIF is not intended for use within

programs as a representation or communication language, it can be used for that

purpose if so desired.

This document supplies full technical details of KIF. Chapter 2 presents the formal

syntax of the language. Chapter 3 discusses conceptualizations of the world. Chapter 4

defines the semantics of the language. Chapter 5 deals with lists; chapter 6, with sets;

and chapter 7, with functions and relations. Chapter 8 describes how metaknowledge is

encoded. Chapter 9 describes the formalization of monotonic and nonmonotonic rules of

inference. Chapter 10 discusses definitions.



Chapter 2

Syntax

Like many computer-oriented languages, KIF has two varieties. In linear KIF, all

expressions are strings of ASCII characters and, as such, are suitable for storage on serial

devices (such as magnetic disks) and for transmission on serial media (such as phone

lines). In structured KIF, the legal "expressions" of the language are structured objects.

Structured KIF is of special use in communication between programs operating in the same

address space.

Fortunately, there is a simple correspondence between the two varieties of KIF. For

every character string, there is exactly one corresponding list structure; and, for every list

structure, there is exactly one corresponding character string (once all unnecessary white

space is eliminated).

In what follows, we first define the mapping between the linear and structured forms

of the language; and, thereafter, we deal exclusively with the structured form.

§2.1 Linear KIF

The alphabet of linear KIF consists of the 128 characters in the ASCII character

set. Some of these characters have standard print representations; others do not. The

characters with standard print representations (93 of the 128) are shown below.

ABCDEFGHI JKLMNDPQKSTUVWXYZ

abcdef ghij klmnopqrstuvwxyz

0123456789 () [] {} <>

= + _ . / \ _ - - , , .. _ ¢ # $ y. : ; , '

KIF originated in a Lisp application and inherits its syntax from Lisp. The relationship

between linear KIF and structured KIF is most easily specified by appeal to the Common

Lisp reader [Steele]. In particular, a string of ascii characters forms a legal expression

in linear KIF if and only if (1) it is acceptable to the Common Lisp reader (as defined

in Steele's book) and (2) the structure produced by the Common Lisp reader is a legal

expression of structured KIF (as defined in the next section).

§2.2 Structured KIF

In structured KIF, the notion of word is taken as primitive. An expression is ei-

ther a word or a finite sequence of expressions. In our treatment here, we use enclosing

parentheses to bound the items in a composite expression.

<word> ::= a primitive syntactic object

<expression> ::= <word> I (<expression>*)

The set of all words is divided into the categories listed below. This categorization

is disjoint and exhaustive. Every word is a member of one and only one category. (The

categories defined here are used again in the grammatical rules of subsequent tables.)
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<indvar>

<seqvar>

<termop>

<funconst>

<relconst>

<logconst>

: := a word

: := a word

: := a word

::= a word beginning with the character ?

::= a word beginning with the character ¢

::= listof I setof I quote I if I cond

the I setofall I kappa i lambda

<sentop> ::= = I /= I not I and I or I => I <=

<ruleop> ::= =>> I <<= I consis

<defop> ::= defobject I defunction I defrelation

<objconst> ::= a word denoting an object

denoting a function

denoting a relation

denoting a truth value

<=> I forall I exists

I := I :=> I :_

From these fundamental categories, we can build up more complex categories, viz.

variables, operators, and constants.

<variable> ::= <indvar> I <seqvar>

<operator> ::= <termop> I <sentop> I <ruleop> I <defop>

<constant> ::= <objconst> I <funconst> I <relconst> I <logconst>

A variable is a word in which the first character is ? or _. A variable that begins with

? is called an individual variable. A variable that begins with an _ is called a sequence

variable. Individual variables are used in quantifying over individual objects. Sequence

variables are used in quantifying over sequences of objects.

Operators are used in forming complex expressions of various sorts. There are four

types of operators in KIF - term operators, sentence operators, rule operators, and defini-

tion operators. Term operators are used in forming complex terms. Sentence operators are

used in forming complex sentences. Rule operators are using in forming rules. Definition

operators are used in forming definitions.

A constant is any word that is neither a variable nor an operator. There are four

categories of constants in KIF - object constants, function constants, relation constants,

and logical constants. Object constants are used to denote individual objects. Function

constants denote functions on those objects. Relation constants denote relations. Logical

constants express conditions about the world and are either true or false.

Some constants are basic in that their type and meaning are fixed in the definition of

KIF. All other constants are non-basic in that the language user gets to choose the type

and the meaning. All numbers, characters, and strings are basic constants in KIF; the

remaining basic constants are described in the remaining chapters of this document.

KIF is unusual among logical languages in that there is no way of determining the

category of a non-basic constant (i.e. whether it is an object, function, relation, or logical

constant) from its inherent properties (i.e. its spelling). The user selects the category
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of every non-basic constant for himself. The user need not declare that choiceexplicitly.
However,the category of a constant determineshow it canbe usedin forming expressions,
and its category can be determined from this use. Consequently, once a constant is used

in a particular way, its category becomes fixed.

There are four special types of expressions in the language - terms, sentences, rules,

and definitions. Terms are used to denote objects in the world being described; sentences

are used to express facts about the world; rules are used to express legal steps of inference;

and definitions are used to define constants; and forms are either sentences, rules, or

definitions.

The set of legal terms in KIF is defined below. There are ten types of terms - individual

variables, object constants, function constants, relation constants, functional terms, list

terms, set terms, quotations, logical terms, and quantified terms. Individual variables,

object constants, function constants, and relation constants were discussed earlier.

<term> ::= <indvar> I <objconst> I <funconst> I <relconst>l

<funterm> I <listterm> I <setterm> I

<quoterm> I <logterm> I <quanterm>

<listterm> ::= (listof <term>* [<seqvar>])

<setterm> ::= (setof <term>* [<seqvar>])

<funterm> ::= (<funconst> <term>* [<seqvar>])

<quoterm> ::= (quote <expression>)

<logterm> ::= (if <sentence> <term> [<term>])l

(cond (<sentence> <term>) ... (<sentence> <term>))

<quanterm> ::= (the <term> <sentence>)l

(setofall <term> <sentence>)1

(kappa (<indvar>* [<seqvar>]) <sentence>*)l

(lambda (<indvar>* [<seqvar>]s) <term>)

A functional term consists of a function constant and an arbitrary number of argu-

ment terms, terminated by an optional sequence variable. Note that there is no syntactic

restriction on the number of argument terms - the same function constant can be applied

to different numbers of arguments; arity restrictions in KIF are treated semantically.

A list term consists of the listof operator and a finite list of terms, terminated by

an optional sequence variable.

A ._et term consists of the setof operator and a finite list of terms, terminated by an

optional sequence variable.

Quotations involve the qu0t e operator and an arbitrary list expression. The embedded

expression can be an arbitrary list structure; it need not be a legal expression in KIF.

Remember that the Lisp reader converts strings of the form 'a into (quote a).



Logical terras involve the if and cond operators. The if form allows for the testing

of a single condition only, whereas the cond form allows for the testing of a sequence of
conditions.

Quantified terms involve the operators the, setofall, kappa, and lambda. A desig-

nator consists of the the operator, a term, and a sentence. A ,et-forming term consist of

the setof operator, a term, and a sentence. A relation-forming term consists of kappa,

a list of variables, and a sentence. A function-forming term consists of lambda, a list of

variables, and a term. Strictly speaking, we do not need kappa and lambda - both can be

defined in terms of setof; they are included in KIF for the sake of convenience.

The following BNF defines the set of legal sentences in KIF. There are six types of

sentences. We have already mentioned logical constants.

<sentence> ::= <logconst> I<equation> l<inequality> I

<relsent> I<logsent> I<quant sent >

<equation> ::= (= <term> <term>)

<inequality> ::= (/= <term> <term>)

<relsent> ::= (<relconst> <term>* [<seqvar>])l

(<funconst> <term>* <term>)

<logsent> ::= (not <sentence>)l

(and <sentence>*)l

(or <sentence>*)l

(=> <sentence>* <sentence>)l

(<= <sentence> <sentence>*)l

(<=> <sentence> <sentence>)

<quantsent> ::= (forall <indvar> <sentence>)l

(forall (<indvar>*) <sentence>)l

(exists <indvar> <sentence>)l

(exists (<indvar>*) <sentence>)

An equation consists of the = operator and two terms.

An inequality consist of the/= operator and two terms.

A relational sentence consists of a relation constant and an arbitrary number of argu-

ment terms, terminated by an optional sequence variable. As with functional terms, there

is no syntactic restriction on the number of argument terms in a relation sentence - the

same relation constant can be applied to any finite number of arguments.

The syntax of logical sentences depends on the logical operator involved. A sentence

involving the not operator is called a negation. A sentence involving the and operator is

called a conjunction, and the arguments are called conjuncts. A sentence involving the

or operator is called a disjunction, and the arguments are called disjuncts. A sentence

involving the --> operator is called an implication; all of its arguments but the last are
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called antecedents; and the last argument is called the consequent. A sentence involving

the <= operator is called a reverse implication; its first argument is called the consequent;

and the remaining arguments are called the antecedents. A sentence involving the <=>

operator is called an equivalence.

There are two types of quantified sentences - a universally quantified sentence is sig-

nalled by the use of the forall operator, and an existentially quantified sentence is signalled

by the use of the exists operator.

The following BNF defines the set of legal KIF rules.

<rule> ::= (=>> <premise>* <sentence>) I

(<<= <sentence> <premise>*)

<premise> ::= <sentence> I (consis <sentence>)

The last argument in a forward rule is called the consequent of the rule. Analogously,

the first argument in a reverse rule is called the consequent. The premises that are sentences

are its prerequisites, and the premises that have the form (consis ¢) are its justifications.

The following BNF defines the set of legal KIF definitions.

<definition> ::= <complete> I <partial>

<complete> ::=

(defobject <objconst> := <term>) I

(deffunction <funconst> (<indvar>*

(defrelation <relconst> (<indvar>*

[<seqvar>] )

[<seqvar>] )

:= <term>) I

:= <sentence>)

<partial> :: <conservative> I <unrestricted>

<conservative> ::=

(defobject <objconst> [:conservative-axiom <sentence>]) I

(deffunction <funconst> [:conservative-axiom <sentence>])

(defrelation <relconst> [:conservative-axiom <sentence>])l

(defrelation <relconst> (<indvar>* [<seqvar>])

:=><sentence> [:conservative-axiom <sentence>])

<unrestricted> ::=

(defobject <objconst> <sentence>*) l

(deffunction <funconst> <sentence>*) I

(defrelation <relconst> <sentence>*) I

(defrelation <relconst> (<indvar>* [<seqvar>])

:=> <sentence> [:axiom <sentence>])

Definitions are used to make category declarations and specify defining axioms for

constants (e.g. "A triangle is a polygon with 3 sides."). KIF definitions can be complete in

that they specify an expression that defines the concept completely, or they can be partial in

that they constrain the concept without necessarily giving a complete equivalence. Partial

definitions can be either cons ervative or unrestricted. Conservative definitions are restricted
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in that their addition to a knowledge base does not result in the logical entailment of any

additional sentences not containing the constant being defined.

Object constants are defined using the defobject operator by specifying (1) a term

that is equivalent to the constant or (2) a sentence that provides a partial description of

the object denoted by the constant. Function constants are defined using the deffunction

operator by specifying (1) a term that is equivalent to the function applied to a given set of

arguments or (2) a sentence that provides a partial description of the function denoted by

the constant. Relation constants are defined using the defrelation operator by specifying

(1) necessary and sufficient conditions for the relation to hold, (2) necessary conditions for

the relation to hold, or (3) arbitrary sentences describing the relation.

A form in KIF is either a sentence, a rule, or a definition.

<form> ::= <sentence> I <definition> I <rule>

A knowledge base is a finite set of forms. It is important to keep in mind that a

knowledge base is a set of sentences, not a sequence; the order of forms within the knowledge

base is unimportant.
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Chapter 3

Conceptualization

The formalization of knowledge in KIF, as in any declarative representation, requires

a conceptualization of the world in terms of objects, functions, and relations.

§3.1 Objects

A universe of discourse is the set of all objects presumed or hypothesized to exist in

the world. The notion of object used here is quite broad. Objects can be concrete (e.g.

a specific carbon atom, Confucius, the Sun) or abstract (e.g. the number 2, the set of

all integers, the concept of justice). Objects can be primitive or composite (e.g. a circuit

that consists of many subcircuits). Objects can even be fictional (e.g. a unicorn, Sherlock

Holmes).

Different users of a declarative representation language, like KIF, are likely to have

different universes of discourse. KIF is conceptually promiscuous in that it does not require

every user to share the same universe of discourse. On the other hand, KIF is conceptually

grounded in that every universe of discourse is required to include certain basic objects.

The following basic objects must occur in every universe of discourse.

• Words. Yes, the words of KIF are themselves objects in the universe of discourse,

along with the things they denote.

• All complex numbers.

• All finite lists of objects in the universe of discourse.

• All sets of objects in the universe of discourse.

• 3_ (pronounced "bottom") - a distinguished object that occurs as the value of various

functions when applied to arguments for which the functions make no sense.

Remember, however, that to these basic elements, the user can add whatever non-basic

objects seem useful.

§3.2 Functions and Relations

A function is one kind of interrelationship among objects. For every finite sequence

of objects (called the arguments), a function associates a unique object (called the value).

More formally, a function is defined as a set of finite lists of objects, one for each combi-

nation of possible arguments. In each list, the initial elements are the arguments, and the

final element is the value. For example, the 1+ function contains the list (2, 3), indicating

that integer successor of 2 is 3.

A relation is another kind of interrelationship among objects in the universe of dis-

course. More formally, a relation is an arbitrary set of finite lists of objects (of possibly

varying lengths). Each list is a selection of objects that jointly satisfy the relation. For

example, the < relation on numbers contains the list (2, 3), indicating that 2 is less than
3.
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Note that both functions and relations are defined as sets of lists. In fact, every
function is a relation. However, not every relation is a function. In a function, there
cannot be two lists that disagreeon only the last element. This would be tantamount
to the function having two valuesfor one combination of arguments. By contrast, in a
relation, there can be any number of lists that agree on all but the last element. For

example, the list (2, 3) is a member of the 1+ function, and there is no other list of length

2 with 2 as its first argument, i.e. there is only one successor for 2. By contrast, the <

relation contains the lists (2, 3), (2, 4), and so forth, indicating that 2 is less than 3, 4, and
so forth.

Many mathematicians require that functions and relations have fixed arity, i.e they

require that all of the lists comprising a function or relation have the same length. The

definitions here allow for functions and relations with variable arity, i.e. it is perfectly

acceptable for a function or a relation to contain lists of different lengths. For example,

the + function contains the lists (1, 1,2) and (1, 1, 1,3), reflecting the fact that the sum

of 1 and 1 is 2 and the fact that the sum of 1 and 1 and 1 is 3. Similarly, the relation <

contains the lists (1, 2) and (1, 2, 3), reflecting the fact that 1 is less than 2 and the fact

that 1 is less than 2 and 2 is less than 3. This flexibility is not essential, but it is extremely

convenient and poses no significant theoretical problems.
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Chapter 4

Semantics

Intuitively, the semantics of KIF is very simple. Unfortunately, the formal details are

quite complex. Consequently, we proceed gradually in our presentation. In this chapter,

we introduce the basic notions underlying the semantics of KIF (in particular, the notions

of interpretation, variable assignment, semantic value, truth value, and various types of

entailment).
The basis for KIF semantics is a correlation between the terms and sentences of the

language and a conceptualization of the world. Every term denotes an object in the

universe of discourse associated with the conceptualization, and every sentence is either

true or false.

When we encode knowledge in KIF, we select constants on the basis of our under-

standing of their meanings. In some cases (e.g. the basic constants of the language), these

meanings are fixed in the definition of the language. In other cases (i.e. the non-basic

constants), the meanings can vary from one user to another.

Given exact meanings for the constants of the language (whether they are the meanings

in the definition of the language or our own concoctions), the semantics of KIF tells us the

meaning of its complex expressions. We can unambiguously determine the referent of any

term, and we can unambiguously determine the truth or falsity of any sentence.

Unfortunately, few of us have complete knowledge about the world. In keeping with

traditional logical semantics, this is equivalent to not knowing the exact referent for every

constant in the language. In such situations, we write sentences that reflect all of the

meanings consistent with whatever knowledge we have. In such situations, the semantics

of the language cannot pick out exact meanings for all expressions in the language, but it

does place constraints on the meanings of complex expressions.

And, of course, the meanings we ascribe to non-basic constants may differ from those

ascribed by others. However, we can convey our meanings to others by writing sentences

to constrain those meanings in accordance with our usage. By writing more and more

sentences, the set of possible referents for our constants is decreased.

In the remainder of this section, we provide precise definitions for the ideas just

introduced. We start off with a definition for the interpretation of constants, and we

introduce the related notion of variable assignment. We then show how these concepts are

used in defining the semantic value of terms and the truth value of sentences. Finally, we

introduce several approaches to entailment, which eliminates the dependence of meaning

on the interpretation of non-basic constants.

§4.1 Interpretation

An interpretation is a function i that associates the constants of KIF with the ele-

ments of a conceptualization. In order to be an interpretation, a function must satisfy the

following two properties.

First, the function must map constants into concepts of the appropriate type. It

must map object constants into objects in the universe of discourse. It must map function

constants into functions on the universe of discourse. It must map relation constants into
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relations on the universe of discourse. Notice that we allow for functions and relations
of variable, finite arity. The function must map logical constants into one of the boolean
valuestrue or false (which may or may not be members of the universe of discourse).

1. If a is an object constant, then i(a) C O.

2. If a is a function constant, then i(a) : O* ---* O.

3. If a is a relation constant, then i(a) C_ O*.

3. If a is a logical constant, then i(a) e {true, false}.

Second, i must "satisfy" the conditions and axioms given in this chapter and the

remaining chapters of this document. As a start, this includes the following conditions.

Every interpretation must map every numerical constant a into the corresponding

number n (assuming base 10).

i(o-) =n

Every interpretation must map the object constant bottom into _L.

/(bottom) = ±

Every interpretation must map the logical constant true into true and the logical

constant false into false.

/(true) = true

/(false) = false

Note that, even with these restrictions, KIF is only a "partially interpreted" language.

Although the interpretations of some constants (the basic constants) are constrained in

the definition of the language, the meanings of other constants (the non-basic constants)

are left open (i.e. left to the imaginations of the language users).

§4.2 Variable Assignment

A variable a_signment is a function that (1) maps individual variables )2 into objects

in a universe of discourse O and (2) maps sequence variables )4; into finite sequences of

objects.

v : l;---* O

v: W---*O*

The notion of a variable assignment is important in defining the meaning of quantified
terms and sentences and is discussed further below.
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§4.3 Semantic Value

Given an interpretation and a variable assignment, we can assign a semantic value to

every term in the language. We formalize this as a function sir from the set 7- of terms

into the set O of objects in the universe of discourse.

sir : 7- _ 0

If an expression is an individual variable u, the semantic value is the object assigned

to that variable by the given variable assignment.

= v(.)

The semantic value of an object constant a is the object assigned to that constant by

the given interpretation.

=i(o)

The semantic value of a function constant rr is the set of tuples in the universe of

discourse corresponding to the function denoted by rr. Here, we use the operator lambda

to denote this function. A full description of the semantics of expressions involving lambda

is given later.

sir(re) = si_((lambda (_1) (rr ©1)))

The semantic value of a relation constant p is the set of tuples in the universe of

discourse corresponding to the relation denoted by p. Here, we use the operator kappa to

denote this relation. A full description of the semantics of expressions involving kappa is

given later.

si_(p) = si,,((kappa (¢1) (p _1)))

In most cases, the semantic value of a function or relation constant is the same as its

interpretation. However, in order to avoid paradoxes, it must in some cases be different.

See the chapter on sets for a fuller discussion of this subject.

The semantic value of a functional term without a terminating sequence variable is

obtained by applying the function denoted by the function constant in the term to the

objects denoted by the arguments.

si_((u n--.r,))= i(rr)[si_(rl),...,si_(r,)]

If a functional term has a terminating sequence variable, the semantic value is obtained

by applying the function to the sequence of arguments formed from the values of the terms

that precede the sequence variable and the values in the sequence denoted by the sequence

variable. (The vertical bar I here means that the objects in the sequence following the bar

are appended to the sequence of elements before the bar.)

si,,((:r rl . . . r, _) ) = i(_r)[si_(n ), ..., si_(r,)ls,v(_) ]
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A term that begins with liatof refers to the sequence of objects denoted by the argu-

ments in the term. There is no restriction on the objects in the sequence.

8iv((liStOf T1 ... Tk)) _-(Niv(T1),...,Niv(Tk)>

If a term that begins with listof ends with a sequence variable, the value of the

term as a whole is the sequence consisting of the objects denoted by the terms prior to

the sequence variable together with the objects in the sequence denoted by the sequence

variable.

A term that begins with aetof refers to the set of "bounded" objects denoted by the

arguments in the term. The concept of boundedness is discussed further in the chapter on

sets.

,iv((segof 7"1 ... 7.k)) = {_Siv(7.1),...,,Siv(7.k)}

If a term that begins with setof ends with a sequence variable, the value of the term

as a whole is the set consisting of the bounded objects denoted by the terms prior to

the sequence variable together with the bounded objects in the sequence denoted by the

sequence variable.

_iv((setof 7.1 ... 7.k w))= {_iv(7.x),...,si_(7.k)}U{xlx=siv(oo)_ }

A quotation denotes the expression contained as argument of the quote operator.

Remember that the universe of discourse for every interpretation must contain all list

expressions and that the argument to quote can be any list expression, whether or not it

is a legal expression in KIF.

si,,((quote e)) = e

Note that any KIF expression (other than a word) is a sequence of KIF expressions.

Thus, there are two ways it can be denoted - with quote and with listof. This means

we have the following equivalence.

siv((quote (q ... en)))-----siv((listof(quote el) ... (quote _n)))

The semantic value of a simple conditional term depends on the truth value of the

embedded sentence (see next section). If the truth value of the embedded sentence is true,

then the semantic value of the term as a whole is the semantic value of the first term;

otherwise, it is the semantic value of the second term (if there is one).

si,,((if ¢ rl r2)) = si,,(r2) otherwise
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If a simple conditional has only one embeddedterm and the truth value of the em-
bedded sentenceis true, then the semantic value of the term is the semantic value of the

embedded term. Otherwise, the value is _1_.

¢ {
Sir(T1) tiv(C) = true

± otherwise

The semantic value of a complex conditional is the semantic value of the first term

for which the truth value of the corresponding sentence is true. If none of the sentences

are true, the semantic value is _1_.

{ ,_iv(T1) fir(el) = true

_1_ otherwise

The semantic value of a quantified term with an interpretation i and variable assig-

ment v is determined by the semantic value of the embedded term or the truth value of

the embedded sentence under the same interpretation but with various new versions of the

variable assignment. We say that a variable assignment v' is a version of variable assign-

ment v with respect to variables Vl, .... , v, if and only if v' agrees with v on all variables

except for vl, .... , vn. The assignments for vl, .... , v, can be the same as those in v or can

be completely different.

The referent of a designator with term r as first argument and sentence ¢ can be one

of two things. Consider all versions v' of v with respect to the free variables in r. If there

is at least one version v' that makes 4' true and the semantic value of T is the same in

every v' that makes ¢ true, then the semantic value of the designator as a whole is that

value. If there is more than one such value, the semantic value is _k.

Siv,(r) tiv,(C)=true and.Siv((the r ¢)) = Siv,,(r) = Siv,(r) for all v" tiv,,(¢) = true

£ otherwise

A set-forming term with the term r as first argument and the sentence ¢ as second

argument denotes the set of objects in the universe of discourse with the following proper-

ties. (1) The object must be the semantic value of r for some version v' of v that makes ¢

true. (2) The object must be bounded. A term is bounded if and only if it satisfies the in-

terpretation of the bounded relation. See the chapter on sets for the axioms characterizing

this relation.

siv((setofall r ¢)) = {siv,(r)ltiv,(¢ ) = true, Siv,(r) 6 /(bounded)}

A function-forming term denotes the set of tuples of bounded objects corresponding

to the function that maps every tuple of objects matching the first argument of the term

into the semantic value of the second argument.

siv((lambda (Vl...vn) r))=siv((setofall (lister vl...vn v) (= r v))
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If the argument list of the function-forming term terminates in a sequencevariable, the
semantic value of the term is the union of the infinite seriesof setsof tuples corresponding
to (1) the same term in which all occurrencesof the sequencevariable are dropped, (2)
the same term in which all occurrencesof the sequencevariable are replaced by a single
individual variable, (3) the sameterm in which all occurrences of the sequence variable are

replaced by two individual variables, etc.

A relation-forming term denotes the set of all tuples of bounded objects that satisfy

the embedded sentence.

siv((kappa (vl...un [cr]) (_))-=Siv((Setofall (listof ul...un [or]) _))

§4.4 Truth Value

In a manner similar to that for terms, we define the truth value for sentences in the

language as a function tiv that maps sentences ,9 into the truth values true or false.

tiv : S _ {true, false}

The truth value of a logical constant is the truth value assigned by the corresponding

interpretation.

tiv(_)=i(A)

An equation is true if and only if the terms in the equation refer to the same object

in the universe of discourse.

{true s,v(T1)= siv(r )ti,,((= rl r2))= false otherwise

An inequality is true if and only if the terms in the equation refer to distinct objects

in the universe of discourse.

( false Sly(T1) Sty(T2)

t v((l= T2))= true otherwise

The truth value of a simple relational sentence without a terminating sequence variable

is true if and only if the relation denoted by the relation constant in the sentence is true of

the objects denoted by the arguments. Equivalently, viewing a relation as a set of tuples,

we say that the truth value of a relational sentence is true if and only if the tuple of objects

formed from the values of the arguments is a member of the set of tuples denoted by the

relation constant.

true e i(p)tiv( (p rl ... r,) ) = false otherwise

If a relational sentence terminates in a sequence variable, the sentence is true if and

only if the relation contains the tuple consisting of the values of the terms that precede
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the sequencevariable together with the objects in the sequence denoted by the variable.

Remember that the vertical bar [ means that the objects in the sequence following the bar

are appended to the sequence of elements before the bar.

{true i(p)tiv( (p 7"1 • • • 7-n w) ) = false otherwise

The truth value of a negation is true if and only if the truth value of the negated

sentence is false.

true ti,(¢) = falsetiv((n°t ¢))= false otherwise

The truth value of a conjunction is true if and only if the truth value of every conjunct

is true.

true ti,(¢/) = true for all j 1 _< j _< nti,((and ¢1 ... ¢")) = false otherwise

The truth value of a disjunction is true if and only if the truth value of at least one

of the disjuncts is true.

true tiv(Oj) = true for some j 1 _< j _< nti,((or ¢1 ... ¢")) = false otherwise

If the truth value of every antecedent in an implication is true, then the the truth

value of the implication as a whole is true if and only if the truth value of the consequent is

true. If any of the antecedents is false, then the implication as a whole is true, regardless

of the truth value of the consequent.

true for some j ti.(¢j) = false or ti,,(¢) = truetiv(( => ¢1 ... Cn ¢))= false otherwise

A reverse implication is just an implication with the consequent and antecedents

reversed.

true ti_(¢) = true or for some j ti,(¢j) = falsetiv((<-'- ¢ ¢1 ... Cn))= false otherwise

The truth value of an equivalence is true if and only if the embedded sentences have

the same truth value.

truetiv(( <=> ¢1 ¢2))= false otherwise

Given an interpretation i and variable assignment v, the truth value of an existentially

quantified sentence is true if and only if the truth value of the second argument is true for

some version v' of variable assignment v with respect to the variables in the first argument.
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true 3v' tiv,(¢) = truetiv((exists (vl ... vk w) _))= false otherwise

Given an interpretation i and variable assignment v, the truth value of a universally

quantified sentence is true if and only if the truth value of the second argument of the

sentence is true for every version v' of v with respect to variables in the first argument.

true Vv' tiv,(¢5) = truetiv((forall (vl ... vk _0) q_))= false otherwise

§4.5 Logical Entailment

The definition of truth value relies on both an interpretation for the constants of KIF

and an assignment for its variables. In encoding knowledge, we often have in mind a specific

interpretation for the constants in our language, but we want our variables to range over

the universe of discourse (either existentially or universally). In order to provide a notion

of semantics that is independent of the assignment of variables, we turn to the notion of

satisfaction.

An interpretation i logically satisfies a sentence ¢5 if and only if the truth value of the

sentence is true for all variable assignments. Whenever this is the case, we say that i is

a model of ¢_. Extending this notion to sets of sentences, we say that an interpretation is

a model of a set of sentences if and only if it is a model of every sentence in the set of

sentences.

Obviously, a variable assignment has no effect on the truth value of a sentence with-

out free variables (i.e. a ground sentence or one in which all variables are bound). Conse-

quently, if an interpretation satisfies such a sentence for one variable assignment, it satisfies

it for every variable assignment.

The occurrence of free variables in a sentence means that the sentence is true for all

assignments of the variables. For example, the sentence (p $x) means that the relation

denoted by p is true for all objects in the universe of discourse. In other words, the

meaning of a sentence with free variables is the same as the meaning of a universally

quantified sentence in which all of the free variables are boundby the universal quantifier.

In KIF, we use this fact to sanction the dropping of prefix universal quantifiers that do

not occur inside the scope of existential quantifiers. In other words, we are permitted to

write (=> (apple $x) (red $x)) in place of the more cumbersome (forall ($x) (=>

(apple $x) (red Sx))).

Unfortunately, the notion of satisfactionisdisturbing in that itisrelativeto an inter-

pretation. As a result,differentindividualsand differentprograms with differentinterpre-

tations may disagree on the truth of a sentence.

It is true that, as we add more sentences to a knowledge base, the set of models

generally decreases. The goal of knowledge encoding is to write enough sentences so that

unwanted interpretations are eliminated. Unfortunately, this is not always possible. In the

light of this fact, how are we to interpret the expressions in such situations? The answer

is to generalize over interpretations as earlier we generalized over variable assignments.
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If A is a set of sentences, we say that A logically entails a sentence ¢ if and only every

model of A is also a model of ¢.

With this notion, we can rephrase the goal of knowledge representation as follows. It

is to encode enough sentences so that every conclusion we desire is logically entailed by

our set of sentences. It is a sad fact that this is not always possible, but it is the ideal

toward which we strive.

§4.6 Indexical Entailment

In the definition of logical entailment, all interpretations are taken into account; there

is no constraint. In certain situations, it is desirable to restrict the possible interpretations

to those in which certain constants are assigned values having to do with the set of sentences

itself. In this case, the constants are said to be indezical. An interpretation then is indezicaI

if and only if it assigns these indexical constants correctly.

In KIF, there is a single indexical constant, viz. the object constant knowedge-base.

An indexical interpretation of a knowledge base A is one in which this constant is assigned

A as value. This one indexical makes it possible for the user to write sentences that depend

on the knowledge base within which the sentences are contained.

Finally, we say that a set of sentences indexically entails a conclusion if and only if

every indexical interpretation and variable assignment that satisfies the set of sentences

also satisfies the conclusion.

§4.7 Nonmonotonic Entailment

Recall that the truth value of a sentence is defined relative to an interpretation i and

a variable assignment v. To define the nonmonotonic value of a premise in a rule, we need

to select, instead of a single interpretation i, a set of interpretations - the interpretations

that are considered "possible". In the following definition, I is a set of interpretations

which all have the same universe of discourse O, and v is a variable assignment with this

universe. We consider prerequisites and justifications separately.

The nonmonotonic value of a prerequisite is true if and only if it is true at every

"possible" intepretation.

{tr e Vi Iti,,(¢) = tr enlv(¢)= false otherwise

The nonmonotonic value of a justification is true if and only if its argument is true

for at least one "possible" intepretation.

true 3i G I rio(C) = truenlv((consis ¢))= false otherwise

Let A be a knowledge base with rules. We define when a set I of interpretations is "a

set of possible worlds" for A, by means of the following fixpoint construction. Consider a

universe of discourse O; by a world we understand an interpretation with the universe O.

Let I be the set of all worlds that satisfy the sentences in A. Consider a maximal set I'

of worlds such that, for each rule 6 6 A and each variable assignment v with the universe
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O, the following condition holds. If the nonmonotonic value of every prerequisite of 6 for

I' and v is true, and the nonmonotonic value of every justification of _ for I and v is true,

then the nonmonotonic value of the consequent of _ for I' and v is true. (This I' always

exists.) If I' is maximal, then we say that I' is a set of possible worlds for A. Typically, a

knowledge base with rules has many sets of possible worlds; it is clear, for instance, that

any two interpretations with different universes cannot belong to the same set of possible

worlds.

An interpretation i is a nonmonotonie model of A if it belongs to some set of possible

worlds for A. We say that a nonmonotonic knowledge base A nonmonotonically entails a

sentence ¢ if and only every nonmonotonic model of A is also a model of ¢.

Note that the definition of a model for nonmonotonic knowledge bases is "nonlocal" -

we cannot check whether an interpretation i is a model by looking at each rule in isolation.

This feature of the definition is responsible for the nonmonotonic character in this notion

of entailment.

§4.8 Definitions

The definitional operators in KIF allow us to state sentences that are true "by defini-

tion" in a way that distinguishes them from sentences that express contingent properties

of the world. Definitions have no truth values in the sense described above. They are so

because we say that they are so.

On the other hand, definitions have content - sentences that allow us to derive other

sentences as conclusions. In KIF, every definition has a corresponding set of sentences,

called the content of the definition. In general, there are three parts to this content.

First of all, there is information about the category of the constant in the definition.

If the constant is a function constant or a relation constant, there is also information about

its arity.

Second, there is the defining axiom associated with the definition (see below).

Finally, there is a sentence stating that the defining axiom associated with the defini-

tion is indeed a defining axiom for the associated concept (named by the constant a used

in the definition). The following sentence expresses this fact. Note the use of quotes to

capture the fact that this is a relationship between a constant and a sentence.

(defining-axiom 'a '¢)

The rules for determining the defining axioms for a definition are somewhat com-

plicated and are described fully in the chapter on definitions. The following is a brief

outline, sufficient to enable the reader to understand the use of definitional constructs in

the intervening chapters.

The defobj oct operator is used to define objects. The two simplest forms are shown

below, together with their defining axioms. In the first case, the defining axiom is the

equation involving the object constant in the definition with the defining term. In the

second case, the defining axiom is the conjunction of the constituent sentences.
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Definition Defining Axiom
(defobject _ := r) (= _ r)

(deffobject cr @I -.. _n) (and _1 "'" _n5

The deffunction operator is used to define functions. Again, the two simplest forms

are shown below, together with their defining axioms. In the first case, the defining axiom

is the equation involving (1) the term formed from the function constant in the definition

and the variables in its argument list and (2) the defining term. In the second case, as

with object definitions, the defining axiom is the conjunction of the constituent sentences.

Definition Defining Axiom

(deffunction _ (V 1 ...V n) "---- r) (= 7r (lambda (Ul ...u.) r))

(deffunction _ @1 ... _n) (and _1 -.. @n)

The defrelation operator is used to define relations. The two simplest forms are

shown below, together with their defining axioms. In the first case, the defining axiom is

the equivalence relating (1) the relational sentence formed from the relation constant in

the definition and the variables in its argument list and (2) the defining sentence. In the

second case, as with object and function definitions, the defining axiom is the conjunction

of the constituent sentences.

Definition Defining Axiom

(defrelation p (Vl ...un) := 4) (= p (kappa (Vl ...v.) 4))

(defrelation p 41 ... 4n) (and 41 ... 4n)

For most purposes, a definition can be viewed as shorthand for the sentences in the

content of the definition.
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Chapter 5

Numbers

KIF includes the following standard vocabulary for describing properties of numbers.

A formal axiomatization of numbers and of the associated functions and relations is being

developed for inclusion in later versions of this manual. Common Lisp is being used as a

guide in that development to determine both the types of numbers and the number-related

functions and relations to include in the language. The informal descriptions below are

provided to indicate the anticipated vocabulary.

§5.1 Functions on Numbers

* - If rl, ..., rn denote numbers, then the term (* T 1 ... Tn) denotes the product of those

numbers.

+ - If rl, ..., r,_ are numerical constants, then the term (+ rl...rn) denotes the sum r of

the numbers corresponding to those constants.

- If r and rl, ..., r,_ denote numbers, then the term (- r rl...rn) denotes the difference

between the number denoted by r and the numbers denoted by 71 through rn. An exception

occurs when n = 0, in which case the term denotes the negation of the number denoted

by r.

/ - If rl, ..., rn are numbers, then the term (/ rl...rn) denotes the result r obtained by

dividing the number denoted by rl by the numbers denoted by 7"2through rn. An exception

occurs when n = 1, in which case the term denotes the reciprocal r of the number denoted

by rl.

1+ - The term (l+ r) denotes the sum of the object denoted by r and 1.

(deffunction 1+ (?x) := (+ ?x 1)) (5.1)

1- - The term (1- r) denotes the difference of the object denoted by r and 1.

(deffunction 1- (?x) := (- ?x 1)) (5.2)

abs - The term (abs r) denotes the absolute value of the object denoted by r.

(deffunction abs (?x) := (if (>= ?x 0) ?x (- ?x))) (5.3)

acos - If r denotes a number, then the term (acos r) denotes the arc cosine of that

number (in radians).

acosh - The term (acosh r) denotes the arc cosine of the object denoted by r (in radians).

ash - The term (asia rl r2) denotes the result of arithmetically shifting the object denoted

by rl by the number of bits denoted by r2 (left or right shifting depending on the sign of

r2).
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asia - The term (asia r) denotesthe arc sine of the object denotedby r (in radians).

asinh - The term (asinh r) denotes the hyperbolic arc sine of the object denoted by r

(in radians).

atan - The term (atan r) denotes the arc tangent of the object denoted by r (in radians).

atanh - The term (atanh r) denotes the hyperbolic arc tangent of the object denoted

by r (in radians).

boole - The term (boole r rl re) denotes the result of applying the operation denoted

by r to the objects denoted by rl and r2.

ceiling - If r denotes a real number, then the term (ceiling r) denotes the smallest

integer greater than or equal to the number denoted by r.

cis - The term (cis r) denotes the complex number denoted by cos(r) + isin(r). The

argument is any non-complex number of radians.

conjugate - If r denotes a complex number, then the term (conjugate

complex conjugate of the number denoted by r.

(deffunction conjugate (?c) :=

(complex-number (realpart ?c) (- (imagpart ?c))))

r) denotes the

(5.4)

The term (cos r) denotes the cosine of the object denoted by r (in radians).

The term (cosh r) denotes the hyperbolic cosine of the object denoted by r (in

COS -

cosh -

radians).

decode-float - The term (decode-float r) denotes the mantissa of the object denoted

by w.

denominator - The term (denominator r) denotes the denominator of the canonical

reduced form of the object denoted by 7.

exp - The term (exp 7) denotes e raised to the power the object denoted by r.

(deffunction exp (?x) := (expt e ?x)) (5.5)

expt - The term (expt rl r2) denotes the object denoted by rl raised to the power the

object denoted by T2.

fceiling - The term (fceiling r) denotes the smallest integer (as a floating point

number) greater than the object denoted by r.

ffloor - The term (ffloor r) denotes the largest integer (as a floating point number)

less than the object denoted by r.

float - The term (fioat r) denotes the floating point number equal to the object

denoted by r.

float-digits - The term (float-digits r) denotes the number of digits used in the

representation of a floating point number denoted by w.
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float-precision - The term (float-precision T) denotes the number of significant

digitsin the floatingpoint number denoted by r.

float-radix - The term (float-radix r) denotes the radix of the floatingpoint number

denoted by r. The most common values are 2 and 16.

float-sign - The term (float-sign rl r2) denotes a floating-point number with the

same sign as the object denoted by rl and the same absolute value as the object denoted

by r2.

The term (floor r) denotes the largest integer less than the object denoted byfloor -

T.

fround - The term (fround T) is equivalent to (ffloor (+ 0.5 r)).

ftruncate - The term (ftruncate r) denotes the largest integer (as a floating point

number) less than the object denoted by r.

gcd - The term (gcd rl ... r,) denotes the greatest common divisor of the objects denoted

by rl through r,.

imagpart - The term (imagpart r) denotes the imaginary part of the object denoted by

T.

integer-decode-float - The term (integer-decode-float r) denotes the significand

of the object denoted by r.

integer-length - The term (integer-length r) denotes the number of bits required

to store the absolute magnitude of the object denoted by r.

isqrt - The term (isqrt r) denotes the integer square root of the object denoted by r.

lcm - The term (lcm rl... r,) denotes the least common multiple of the objects denoted

by rl,... ,r,.

log - The term (log rl 72) denotes the logarithm of the object denoted by rl in the

base denoted by r2.

logand - The term (logand rl... r,) denotes the bit-wise logical and of the objects

denoted by rl through r..

logandcl -

logandc2 -

logcount -

The term (logandcl rl r2) is equivalent to (logand (lognot rl) 7-2).

The term (logandc2 rl r2) is equivalent to (logand rl (lognot r2)).

The term (logcount r) denotes the number of on bits in the object denoted

by r. If the denotation of r is positive, then the one bits are counted; otherwise, the zero

bits in the twos-complement representation are counted.

logeqv - The term (logeqv rl ... rn) denotes the logical-exclusive-or of the objects de-

noted by rl,... ,%.

logior - The term (logior rl... r,,) denotes the bit-wise logical inclusive or of the

objects denoted by rl through r,. It denotes 0 if there are no arguments.
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lognand-

lognor-

lognot -

T.

logorcl-

logorc2-

logxor -

The term (lognand 7"1 7"2) iS equivalent to (lognot (logand 7"1 7"2)).

The term (lognor rl 7.2) is equivalent to (not (logior 7.1 7"2)).

The term (lognot T) denotes the bit-wise logical not of the object denoted by

The term (logorcl 7"1 7"2)is equivalent to (logior (lognot 7"1) 7"2)"

The term (logorc2 7"1 r2) is equivalent to (logior 7.1 (lognot r2)).

The term (logxor 0"1... 7..) denotes the bit-wise logical exclusive or of the

objects denoted by rl through 7.,,. It denotes 0 if there are no arguments.

max - The term (max rl ... 7-k) denotes the largest object denoted by 7.1 through vn.

rain - The term (min rl ... 7.k) denotes the smallest object denoted by 7.1 through r..

rood - The term (rood 7"1 7"2) denotes the root of the object denoted by 7"1 modulo the

object denoted by 7"2. The result will have the same sign as denoted by 7"1-

numerator - The term (numerator 7") denotes the numerator of the canonical reduced

form of the object denoted by 7".

phase - The term (phase r) denotes the angle part of the polar representation of the

object denoted by v (in radians).

rationalize - The term (rationalize 7.) denotes the rational representation of the

object denoted by T.

realpart - The term (realpart 7.) denotes the real part of the object denoted by 7".

rein - The term (rein <number> <divisor>) denotes the remainder of the object denoted

by <number> divided by the object denoted by <divisor>. The result has the same sign

as the object denoted by <divisor>.

round - The term (round r) denotes the integer nearest to the object denoted by r. If

the object denoted by 7 is halfway between two integers (for example 3.5), it denotes the

nearest integer divisible by 2.

scale-float - The term (scale-float vl 72) denotes a floating-point number that is

the representational radix of the object denoted by 7"1 raised to the integer denoted by 7.2-

signum - The term (signum 7") denotes the sign of the object denoted by 7". This is one

of -1, 1, or 0 for rational numbers, and one of -1.0, 1.0, or 0.0 for floating point numbers.

sin - The term (sin 7") denotes the sine of the object denoted by 7" (in radians).

sinh - The term (sinh 7") denotes the hyperbolic sine of the object denoted by r (in

radians).

sqrt - The term (sqrt r) denotes the principal square root of the object denoted by 7".

tan - The term (tan v) denotes the tangent of the object denoted by T (in radians).
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tmuh - The term (tanh r) denotes the hyperbolic tangent of the object denoted by r (in

radians).

truncate - The term (truncate v) denotes the largest integer less than the object

denoted by r.

§5.2 Relations on Numbers

integer - The sentence (integer r) means that the object denoted by r is an integer.

real-number - The sentence (real-number T) means that the object denoted by r is a

real number.

complex-number - The sentence (complex-number T) means that the object denoted by

r is a complex number.

(defrelation number (?x) :=

(or (real-number ?x) (complex-number ?x))) (5.6)

(defrelation natural (?x) := (and (integer ?x) (>= ?x 0))) (5.7)

(defrelation rational-number (?x) :=

(exists (?y) (and (integer ?y) (integer (* ?x ?y))))) (5.8)

< - The sentence (< Wl r2) is true if and only if the number denoted by rl is less than

the number denoted by r2.

(defrelation > (?x ?y) := (< ?y ?x)) (5.9)

(defrelation =< (?x ?y) := (or (= ?x ?y) (< ?x ?y))) (5.10)

(defrelation >= (?x ?y) := (or (> ?x ?y) (= ?x ?y))) (5.11)

(defrelation positive (?x) := (> ?x 0)) (5.12)

(defrelation negative (?x) := (< ?x 0)) (5.13)

(defrelation zero (?x) := (= ?x 0)) (5.14)

(defrelation odd-integer (?x) := (integer (/ (+ ?x i) 2)) (5.15)

(defrelation even-integer (?x) := (integer (/ ?x 2)) (5.16)

logbit - The sentence (logbit rl r2) is true if bit r 2 of rl is 1.

logtest - The sentence (logtest rl r2) is true if the logical and of the two's-complement

representation of the integers vl and T2 is not zero.
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Chapter 6

Lists

A list is a finite sequence of objects. The objects in a list need not be KIF expressions,

though they may be. In other words, it is just as acceptable to talk about a list of two

people as it is to talk about a list of two symbols.

In KIF, we use the term (listof rl ... rk) to denote the list of objects denoted

by rl, ..., Tk. For example, the following expression denotes the list of an object named

mary, a list of objects named tom, dick, and harry, and an object named sally.

(listof mary (listof tom dick harry) sally)

The relation list is the type predicate for lists. An object is a list if and only if there

is a corresponding expression involving the listof operator.

(defrelation list (?x) :=

(exists (©i) (= ?x (listof ©i))) (6.1)

The object constant nil denotes the empty list. null tests whether or not an object

is the empty list. The relation constants single, double, and triple allow us to assert

the length of lists containing one, two, and three elements, respectively.

(defobject nil := (listof)) (6.2)

(defrelation null (?I) := (= ?i (listof))) (6.3)

(defrelation single (71) := (exists ?x (= ?I (listof ?x)))) (6.4)

(defrelation double (?i) :=

(exists (?x ?y) (= ?I (listof ?x ?y)))) (6.5)

(defrelation triple (?i) :=

(exists (?x ?y ?z) (= ?i (listof ?x ?y ?z)))) (6.6)

The functions first, rest, last, and butlast each take a single list as argument

and select individual items or sublists from those lists.

(deffunction first (71) := (if (= (listof ?x ©items) ?i) ?x) (6.7)

(deffunction rest (?i) :=

(cond ((null ?I) ?I)

((= ?i (listof ?x _items)) (listof ©items)))) (6.8)

(deffunction last (?I) :=

(cond ((null ?i) bottom)

((null (rest ?i)) (first ?I))

(true (last (rest ?i))))) (6.9)
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(deffunction butlast (?i) :=

(cond ((null 71) bottom)

((null (rest 71)) nil)

(true (cons (first 71) (butlast (rest 71)))))) (6.10)

The sentence (item T 1 T 2) is true if and only if the object denoted by 72 is a non-

empty list and the object denoted by T1 is either the first item of that list or an item in

the rest of the list.

(defrelation item (?x 71) :=

(and (list 71)

(not (null 71))

(or (= ?x (first 71)) (item ?x (rest 71))))) (6.11)

The sentence (sublist r, r2) istrue ifand only ifthe object denoted by rl isa final

segment of the listdenoted by r2.

(defrelation sublist (711 712) :=

(and (list 711)

(list 712)

(or (= 711 712)

(sublist ?II (rest 712))))) (6.12)

The function cons adds the object specified as its first argument to the front of the

list specified as its second argument.

(deffunction cons (?x 71) :=

(if (= ?i (listof ©i)) (listof 7x @I))) (6.13)

The function append adds the items in the list specified as its first argument to the

list specified as its second argument. The function revappend is simiar, except that it

adds the items in reverse order.

(deffunction append (711 712) :=

(if (null 711) (if (list 712) 712)

(cons (first 711) (append (rest 711) 712)))) (6.14)

(deffunction revappend (?ii 712) :=

(if (null 711) (if (list 712) 712)

(revappend (rest 711) (cons (first 711) 712)))) (6.15)

The function reverse produces a list in which the order of items is the reverse of that

in the list supplied as its single argument.

(deffunction reverse (?i) := (revappend ?I (listof))) (6.16)

The functions adj oin and remove construct lists by adding or removing objects from

the lists specified as their arguments.

(deffunction adjoin (?x 71) := (if (item ?x ?I) 71 (cons ?x 71))) (6.17)
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(deffunction remove (Tx 71) :=

(cond ((null 71) nil)

((and (= 7x (first 71)) (listp 71))

(remove ?x (rest 71)))
((list 71) (cons ?x (remove ?x (rest 71)))))) (6.18)

The value of subst is the object or listobtained by substituting the object supplied as

first argument for all occurrences of the object supplied as second argument in the object

or list supplied as third argument.

(deffunction subst (?x ?y ?z) :=

(cond ((= ?y ?z) 7x)

((null ?z) nil)

((list ?z) (cons (subst ?x ?y (first ?z))

(subst ?x ?y (rest ?z))))

(true 7z))) (6.19)

The function constant length gives the number of items in a list. nth returns the item

in the list specified as its first argument in the position specified as its second argument.

nthrest returns the list specified as its first argument minus the first n items, where n is

the number specified as its second argument.

(deffunction length (71) :=

(cond ((null 71) 0)

((list 71) (i+ (length (rest 71)))))) (6.20)

(deffunction nth (71 ?n) :=

(cond ((= ?n I) (first 71))

((positive ?n) (nth (rest 71) (I- ?n))))) (6.21)

(deffunction nthrest (71 ?n) :=

(cond ((= ?n 0) (if (listp 71) 71))

((positive ?n)) (nthrest (rest 71) (I- ?n))))) (6.22)
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Chapter 7

Sets

In many applications, it is helpful to talk about sets of objects as objects in their own

right, e.g. to specify their cardinality, to talk about subset relationships, and so forth.

The formalization of sets of simple objects is a simple matter; but, when we begin

to talk about sets of sets, the job becomes difficult due to the threat of paradoxes (like

Russell's hypothesized set of all sets that do not contain themselves).

Fortunately, there is no shortage of mathematical theories for our use in KIF - various

higher order logics, Zermelo-Fraenkel set theory, von Neuman-Bernays-G6del set theory,

Quine's variants on the previous two approaches, the more recently elaborated proposals

by Feferman and Aczel, and so forth. In KIF, we have adopted a version of the von

Neumann-Bernays-G6del set theory.

In our presentation here, we first discuss the basic concepts of this theory - the notions

of set and membership. Next, we look at some terminology for describing the properties

of sets. We then present the standard axioms of set theory. Finally, we discuss the threat

of paradox and indicate how our use of the von Neumann-Bernays-GSdel set theory avoids

this problem.

An important word of warning for mathematicians. In KIF, certain words are used

nontraditionally. Specifically, the standard notion of class is here called a set; the standard

notion of set is replaced by the notion of bounded set; and the standard notion of proper

class is replaced by unbounded set.

§7.1 Basic Concepts

In KIF, a fundamental distinction is drawn between individuals and sets. A set is a

collection of objects. An individual is any object that is not a set.

A distinction is also drawn between objects that are bounded and those that are

unbounded. This distinction is orthogonal to the distinction between individuals and sets.

There are bounded individuals and unbounded individuals. There are bounded sets and

unbounded sets.

The fundamental relationship among these various types of entities is that of member-

ship. Sets can have members, but individuals cannot. Bounded objects can be members

of sets, but unbounded objects cannot. (It is this condition that allows us to avoid the

traditional paradoxes of set theory.)

In KIF, we use the unary relation constants individual and set, bounded and un-

bounded to make these distinctions; and we use the binary relation constant member to

talk about membership.

The sentence (individual r) is true if and only if the object denoted by r is an

individual. The sentence (set r) is true if and only if the object denoted by r is a set.

As just described, individuals and sets are exhaustive and mutually disjoint.

(or (set ?x) (individual ?x)) (7.1)

(or (not (set ?x)) (not (individual ?x))) (7.9)
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The sentence (bounded r) is true if and only if the object denoted by r is bounded.

The sentence (unbounded r) is true if and only if the object denoted by r is unbounded.

Boundedness and unboundedness are exhaustive and mutually disjoint.

(or (bounded ?x) (unbounded ?x)) (7.3)

(or (not (bounded ?x)) (not (unbounded ?x))) (7.4)

The sentence (member 71 r2) is true if and only if the object denoted by vl is con-

tained in the set denoted by T2. As mentioned above, an object can be a member of another

object if and only if the former is bounded and the latter is a set.

(=> (member ?x ?s)

(bounded ?x) ) (7.5)

(=> (member ?x ?s)

(set ?x)) (7.6)

An important property shared by all sets is the extensionality property. Two sets are

identical if and only if they have the same members.

(=> (and (set ?sl) (set ?s2))

(<=> (forall (?x) (<=> (member ?x ?el) (member ?x ?s2)))

(= ?el ?s2))) (7.7)

§7.2 Sets

To allow us to name specific sets, KIF provides the operators setof and setofall.

The term (setof 71 ... rk) denotes the set consisting of the objects denoted by

rl, ..., rk that are bounded.

(=> (item ?x (listof @items))

(bounded ?x)

(member ?x (setof @items))) (7.8)

(=> (member ?x (setof @items))

(item ?x (listof @items))) (7.9)

Note that the cardinalityof the set denoted by (setof rl • • • rk) can be lessthan

k. By definition, an object can appear in a set only once. Consequently, if r/ and rj (for

different i and j) denote the same object, the resulting set must contain fewer than k
members.

The operator setofall allows us to define sets in terms of their properties. The term

(setofall r ¢) denotes the set of all bounded objects denoted by r for any assignment

of the free variables in r that satisfies ¢.

(<=> (member r (setofall v ¢))

(and (bounded r) @u/r)) (7.10)

Note that the first argument to setofall must be a term, not a list of variables as

with forall and exists. The term can be a single variable, a functional expression, or
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even a quantified term. If the term contains no free variables, then the set consists of either

zero members or one member, depending on the truth value of the embedded sentence.

The empty relation is true of the empty set but false of all other objects.

(defrelation empty (?x) := (= ?x (setof))) (7.11)

In KIF, the functions union_ intersection_ difference_ and complement are defined

as follows.

(deffunction union (¢sets) :=

(if (forall (?s) (=> (item ?s (listof _sets)) (set ?s)))

(setofall ?x (exists (?s) (and (item ?s (listof _sets))

(member ?x ?s))))) (7.12)

(deffunction intersection (_sets) :=

(if (forall (?s) (=> (item ?s (listof _sets)) (set ?s)))

(setofall ?x (forall (?s) (=> (item ?s (listof _sets))

(member ?x ?s)))))

(deffunction difference (?set @sets) :=

(if (and (set ?set)

(forall (?s) (=> (item ?s (listof ©sets)) (set ?s))))

(setofall ?x

(and (member ?x ?set)

(forall (?s) (=> (item ?s (listof @sets))

(not (member ?x ?s))))))))

(7.13)

(7.14)

(deffunction complement (?s) :=

(if (set ?s)

(setofall ?x (not (member ?x ?s))))) (7.15)

The functions generalized-union and generalized-intersection allow us to talk

about the union and intersection ofthe setsin a set of sets.

(deffunction generalized-union (?set) :=

(if (and (set ?set)

(forall (?s) (=> (member ?s ?set) (set ?s)))

(setofall ?x (exists (?s) (and (member ?s ?set)

(member ?x ?s)))))) (7.16)

(deffunction generalized-intersection (?set) :=

(if (and (set ?set)

(forall (?s) (=> (member ?s ?set) (set ?s)))

(setofall ?x (exists (?s) (=> (member ?s ?set)

(member ?x ?S)))))) (7.17)

The sentence (subset rl r2)is trueif and only if rl and r2are sets and the objects

in the set denoted by rl are contained in the set denoted by _.
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(defrelation subset (?el ?s2) :=

(and (set ?el) (set ?s2)

(forall ?x (=> (member ?x ?el) (member ?x ?s2))))) (7.18)

The sentence (proper-subset rl r2) is true if the set denoted by rl is a subset of

the set denoted by r2 but not vice-versa.

(defrelation proper-subset (?el ?s2) :=

(and (subset ?el ?s2)

(not (subset ?s2 ?el)))) (7.19)

Two sets are disjoint if and only if there is no object that is a member of both sets.

Sets are pairwise-disjoint if and only if every set is disjoint from every other set. Sets are

mutually-disjoint if and only if there is no object that is a member of all of the sets. Note

that mutually-disjoint sets need not be pairwise disjoint; in fact, every pair of sets might

be overlapping. For example, the sets {a, b} and {b, c} and {a, c} are mutually disjoint but

not pairwise disjoint.

(defrelation disjoint (?el ?s2) :=

(empty (intersection ?el ?s2))) (7.20)

(defrelation pairwise-disjoint (@sets) :=

(forall (?el ?s2) (=> (item ?el (listof @sets))

(item ?s2 (listof @sets))

(or (= ?el ?s2) (disjoint ?el ?s2))))) (7.21)

(defrelation mutually-disjoint (@sets) :=

(= (intersection @sets) (set))) (7.22)

(defrelation set-partition (?s @sets) :=

(and (= ?s (union @sets))

(pairwise-disjoint @sets))) (7.23)

(defrelation

(subset ?s

set-cover (?s @set) :=

(union @sets)))

(7.24)

We close this section with two axioms that allow us to conclude that sets of various

sorts do, in fact, exist. The first is the axiom of regularity - every non-empty set has an

element with which it has no members in common.

(forall (?s)

(=> (not (empty ?s))

(exists (?u) (and (member ?u ?s) (disjoint ?u ?s))))) (7.25)

This axiom is not absolutely essential for set theory. However, it makes many proofs

a lot easier, and so it is commonly included among the axioms of set theory.
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The second axiom is the axiom of choice. It asserts that there is a set that associates

every bounded set with a distinguished element of that set. In effect, it chooses an element

from every bounded set.

(exists (?s)

(and (set .Ts)

(forall (?x) (=>

(forall (?x ?y ?z) (=>

(member ?x ?s) (double ?x)))

(and (member (lister ?x ?y) ?s)

(member (lister ?x ?z) ?s))

(= ?y ?z)))
(forall (?u)

(=> (and (bounded ?u)

(exists (?v) (and

(not (empty ?u)))

(member ?v ?u)

(member (listof ?u ?v) ?s)))))))) (7.26)

Again, this axiom is not essential. In some versions of set theory, the axiom of choice

is omitted. However, it is a highly desirable property and is included here for that reason.

§7.3 Boundedness

As mentioned earlier, the key difference between bounded and unbounded objects is
that the former can be members of other sets while the latter cannot. This fact establishes

a necessary and sufficient test for boundedness - an object is bounded just in case it is

a member of a set. However, this is not very helpful, since we often need to determine

whether or not an object is bounded based on other properties, not the sets of which it is

a member. In this section, we look at some axioms that help us make this determination

for sets.

First of all, we have the finite _et axiom. Any finite set of bounded sets is itself a

bounded set.

(bounded (setof ©1)) (7.27)

The sub_et axiom assures that the set of all of subsets of a bounded set is also a

bounded set.

(=> (bounded ?v) (bounded (setofall ?u (subset ?u ?v)))) (7.28)

The union axiom tells us that the generalized union of any bounded set of bounded

sets is also a bounded set. Since every finite set is bounded, this allows us to conclude, as

a special case, that the union of any finite number of bounded sets is a bounded set.

(=> (and (bounded ?u) (forall (?x) (=> (member ?x ?u) (bounded ?x))))

(bounded (generalized-union ?u))) (7.29)

The intersection axiom tells us that the intersection of a bounded set and any other

set is a bounded set. So long as one of the sets defining the intersection is bounded, the

resulting set is bounded.

(=> (and (bounded ?u) (set ?s))

(bounded (intersection ?u ?s))) (7.30)
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Finally, we have the aziom of infinity. There is a bounded set containing a set, a set

that properly contains that set, a third set that properly contains the second set, and so

forth. In short, there is at least one bounded set of infinite cardinality.

(exists (?u)

(and (bounded ?u)

(not (empty ?u))

(forall (?x)

(=> (member ?x ?u)

(exists (?y) (and (member ?y ?u)

(proper-subset ?x ?y))))))) (7.31)

§7.4 Paradoxes

The presence of sets in our universe of discourse does not in itself lead to paradoxes.

The paradoxes appear only when we try to define set primitives that are too powerful. We

have defined the sentence (member r a) to be true in exactly those cases when the object

denoted by r is a member of the set denoted by a, and we might consider defining the term

(setofaI1 r ¢) to mean simply the set of all objects denoted by r for any assignment of

the free variables of r that satisfies ¢. Unfortunately, these two definitions quickly lead to

paradoxes.

Let ¢_/_ be the result of substituting term T for all free occurrences of u in sentence
¢. Provided that r is a term not containing any free variables captured in ¢,_, then the

following schema follows from our informal definition. This schema is called the principle

of unrestricted _et abstraction.

(<=> (member r (setofall v ¢)) Cult)

Now, let us substitute the variable ?x for v, the sentence (not (member ?x ?x)) for

¢, and the term (setofall ?x (not (member ?x ?x))) for r. The resulting instance of

the principle of unrestricted set abstraction follows.

(<=> (member (setofall ?x (not

(setofall ?x (not

(not (member (setofall ?x

(setofall ?x

(member ?x ?x)))

(member ?x ?x))))

(not (member ?x ?x))))

(not (member ?x ?x)))))

This sentence has the form (<=> ¢ (not ¢)), which cannot be true in any interpre-

tation. This is Russell's paradox, only one of a family of familiar absurdities following

from the principle of unrestricted set abstraction.

It is crucial that the paradoxes of set theory be avoided. One of the goals in the

design of KIF is that it have a clearly specified model-theoretic semantics in terms of

which the concepts of entailment, equivalence, consistency, soundness and completeness

can be defined. If the paradoxes are allowed to persist in principle, even if they are easy

to avoid in practice, the consequence would be that no KIF theory would be true in any

model. Definitions couched in terms of models would be trivialized, becoming useless. All

sentences would be entailed by any theory, any two theories would be equivalent, no theory

would be consistent, every possible inference rule would be sound, and so on.

39



In the von-Neuman-GSdel-Bernaysversion of set theory, these paradoxes are avoided

by replacing the principle of unrestricted set abstraction with the principle of restricted

set abstraction given above.

(<=> (member r (setofall v ¢))

(and (bounded r) Cv/r))

With this principle, there are two reasons why something may be excluded from a

set (setofall v ¢). It may fail to be a member because it does not satisfy the defining

condition ¢, or it may be excluded because it is an unbounded object. Conditioning the

membership of objects in this set on their boundedness effectively eliminates the paradoxes.
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Chapter 8

Functions and Relations

In KIF, we can describe specific functions and relations by naming them with function

constants and relation constants and then writing sentences in which those names occur in

functional or relational position. For most purposes, this is adequate; but in some cases it

is also useful to describe functions and relations more generally - to name their properties

(such as associativity and transitivity) and to write axioms relating these properties (pos-

sibly quantifying over the functions and relations possessing these properties). In order to

do this, we need to treat functions and relations as objects in our universe of discourse.

By definition, functions and relations are sets of lists of objects from our universe of

discourse. The immediately preceding chapters offer a vocabulary for describing lists and

sets in general. However, functions and relations have enough special properties to warrant

additional vocabulary.

In what follows, we begin by presenting the KIF vocabulary for abstraction and ap-

plication of functions and relations. We then talk about the use of functions and relation

constants in argument position of terms. Finally, we present some supporting vocabulary.

Note that the introduction of functions and relations into our universe of discourse

comes with the threat of paradox, as with sets in general. In KIF, we sidestep such

paradoxes by defining the sets comprising our functions and relations in terms of the set

concepts introduced in the preceding chapter.

§8.1 Basic Vocabulary

As described in chapter 3, a relation is an arbitrary set of lists. A collection of objects

satisfies a relation if and only if the list of those objects is a member of this set.

(defrelation relation (?r) :=

(and (set ?r)

(forall (?x) (=> (member ?x ?r) (list ?x))))) (8.1)

Since KIF allows for n-ary relations, the lists in the set need not be of the same length.

For example, the < relation is defined on 2-lists, 3-lists, 4-lists, and so forth.

A function is a set of lists in which the items in every list except for the last determine

the last item, i.e. there cannot be two lists that agree on all but the last item and disagree

on the last item.

(defrelation function (?f) :=

(and (relation ?f)

(forall (?i ?m)

(=> (member ?I ?f)

(member ?m ?f)

(= (butlast ?I) (butlast ?m))

(= (last ?l) (last ?m)))))) (8.2)
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As with relations in general, the lists of a function neednot be of the same length,
to allow for functions of variable arity. For example, associativefunctions like + and *
functions canbe applied to arbitrary numbersof arguments.

An important differencebetweenour treatment of functions and the traditional treat-
ment is that functions neednot contain lists for every possiblecombination of arguments.
If a function is undefined for a particular combination of objects (i.e. if its value is _1_),
then weomit that list from the set. Thus, eventhough our universeof discourseis infinite,
it is possiblefor a function to havea finite number of lists.

§8.2 Function and Relation Constants

Since function constants and relation constants denote functions and relations and

since functions and relations are objects in our universe of discourse, it is natural to allow

function and relation constants to appear as as arguments in terms and sentences.

Unfortunately, in order to avoid paradoxes, it is sometimes essential for there to be

a difference between the interpretation of a function or relation constant and its semantic

value. We can sidestep these potential difficulties by writing axioms that define function

and relation constants, used in argument position, in terms of the setof operator.

As described in chapter 4, the semantic value of a function constant _r is the set of

lists of objects corresponding to the function denoted by _'. The following axiom schema

expresses this property.

(= 7r (setofall (listof vl ... Vk 11) (= (Tr vl ... Vk) u)) (8.3)

Similarly, the semantic value of a relation constant p is the set of lists of objects that

satisfy the relation denoted by p. Again, we have an axiom schema corresponding to this

property.

(= p (setofall (listof ul ... Uk) (p ul ... Uk))) (8.4)

The use of function and relation constants in argument position weakens the distinc-

tion between object constants on the one hand and function and relation constants on the

other.

The distinction between function and relation constants can also be weakened, since

functions are a special class of relations. Any position that requires a relation constant

can also be filled by a function constant. When this happens, the function denoted by

the function constant is treated as a relation (which it is). For instance, in the following

sentence, the first occurrence of + plays the role of a relation constant, while in the second

occurrence, it plays the role of a function constant. (In both cases, + denotes the same

entity.)

(and (+ 2 3 5)

(= (+ 2 3 s) 10))

In KIF, all function constants are treated as relation constants, and all relation con-

stants (and hence all function constants) are treated as object constants. An object con-

stant is still prohibited from occurring as the first item of a term or a sentence, and a

relation constant that is not a function constant cannot occupy the first position in a

term.
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The convenienceafforded by the ability to usefunction and relation constantsas ar-
guments and to use function constants in relational position often causes concern over

grammatical ambiguity. The expression (+ 5 2 3) is both a term and a sentence. Fortu-

nately, this ambiguity is always resolved when such expressions occur within well-formed

databases. Any expression that occurs at top level cannot be a term. An expression

embedded in a non-operator expression must be a term. An expression embedded in an

operator expression can be either a term or a sentence, but in either case the type of the

expression is known from the operator's syntax.

§8.3 Concretion

If r denotes a relation, then the sentence (holds r 7"1 • • • 7"k) is true if and only

if the list of objects denoted by rl,...,rk is a member of that relation.

(defrelation holds (?r ©args) :=

(and (relation ?r) (member (listof @args) ?r))) (8.5)

If 7- denotes a function with a value for the objects denoted by rl ,..., 7-k, then the term

(value r rl ... Vk) denotes the value of applying that function to the objects denoted

by 7-1,..-,rk. Otherwise, the value is undefined.

(deffunction value (?f Bergs) :=

(if (and (function ?f)

(member ?I ?f)

(= (butlast ?i) (listof @args)))

(last?l))) (8.6)

(deffunction apply (?f 71) :=

(if (and (function ?f) (= ?i (listof @args)))

(value ?f @args))) (8.7)

(deffunction map (?f ?i) :=

(if (null ?i) (list)

(cons (value ?f (first ?i)) (map ?f (rest ?i))))) (8.8)

§8.4 Abstraction

As described in chapter 4, the semantic value of the term (lambda (_1 • . • vk [co] )

7-) is the set of lists associated with the function that maps every list of objects "matching"

the variable list to the value of r when the variables in the variable list are assigned to the

objects in the list. We can capture this meaning with the following axiom schema.

(= (lambda (ul ... uk [w]) r)

(setofall (listof vl ... Vk [w] v) (= v T))) (8.9)

The semantic value of the term (kappa (vl . .. vk [w]) ¢) is the set of lists asso-

ciated with the relation that holds of every list of objects "matching" the variable list for
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which the sentence ¢ is satisfied. We can capture this meaning with the following axiom

schema.

(= (kappa (Ul ... vk [w]) ¢)

(setofall (listof vl • • • vk [w]) ¢))) (8.10)

§8.5 Additional Concepts

The universe of a relation is the set of all objects occurring in some list contained in

that relation.

(deffunction universe (?r) :=

(if (relation ?r)

(setofall ?x (exists (?i) (and (member ?i ?r)

(item ?x ?i)))))) (8.11)

A unary relation is a non-empty relation in which all listshave exactly one item.

(defrelation unary-relation (?r) :=

(and (not (empty ?r))

(forall (?I) (=> (member ?i ?r) (single ?I))))) (8.12)

A binary relation is a non-empty relation in which all lists have exactly two items. The

inverse of a binary relation is a binary relation with all tuples reversed. The composition

of a binary relation rl and a binary relation r2 is a binary relation in which an object x is

related to an object z if and only if there is an object y such that x is related to y by rl

and y is related to z by r_.

(defrelation binary-relation (?r) :=

(and (not (empty ?r))

(forall (71) (=> (member ?i ?r) (double ?i))))) (8.13)

(deffunction inverse (?r) :=

(if (binary-relation ?r)

(setofall (listof ?y ?x) (holds ?r ?x ?y)))) (8.14)

(deffunction composition (?rl ?r2) :=

(if (and (binary-relation ?rl)

(binary-relation ?r2)

(setofall (listof ?x ?z)

(exists (?y)

(and (holds Trl ?x ?y)

(holds ?r2 ?y ?z))))))) (8.15)

(defrelation one-one (?r) :=

(and (binary-relation ?r)

(function ?r)

(function (inverse ?r)))) (8.16)
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(defrelation many-one (?r) :=

(and (binary-relation ?r)

(function ?r))) (8.17)

(defrelation one-many (?r) :=

(and (binary-relation ?r)

(function (inverse ?r)))) (s.ls)

(defrelation many-many (?r) :=

(and (binary-relation ?r)

(not (function ?r))

(not (function (inverse ?r))))) (8.19)

A unary funetion is a function with a single argument and a single value. Henee, itis

also a binary relation.

(defrelation unary-function (?f) :=

(and (function ?f)

(binary-relation ?f))) (8.20)

A binary function is a function with two arguments and one value. Hence, it is a

relation with three arguments.

(defrelation binary-function (?f) :=

(and (function ?f)

(not (empty ?f))

(forall (71) (=> (member ?i ?f) (triple ?i))))) (8.21)
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Chapter 9

Metaknowledge

§9.1 Naming Expressions

In formalizing knowledge about knowledge, we use a conceptualization in which ex-

pressions are treated as objects in the universe of discourse and in which there are functions

and relations appropriate to these objects. In our conceptualization, we treat atoms as

primitive objects (i.e. having no subparts). We conceptualize complex expressions (i.e.

non-atoms) as lists of subexpressions (either atoms or other complex expressions). In

particular, every complex expression is viewed as a list of its immediate subexpressions.

For example, we conceptualize the sentence (not (p (+ a b c) d)) as a list con-

sisting of the operator not and the sentence (p (+ a b c) d). This sentence is treated

as a list consisting of the relation constant p and the terms (+ a b c) and d. The first

of these terms is a list consisting of the function constant + and the object constants a, b,

and c.

For Lisp programmers, this conceptualization is relatively obvious, but it departs

from the usual conceptualization of formal languages taken in the mathematical theory of

logic. It has the disadvantage that we cannot describe certain details of syntax such as

parenthesization and spacing (unless we augment the conceptualization to include string

representations of expressions as well). However, it is far more convenient for expressing

properties of knowledge and inference than string-based conceptualizations.

In order to assert properties of expressions in the language, we need a way of referring

to those expressions. There are two ways of doing this in KIF.

One way is to use the quote operator in front of an expression. From the section on

semantics, we know that a quotation denotes the expression embedded within the term.

Therefore, to refer to the symbol john, we use the term 'john or, equivalently, (quote

john). To refer to the expression (p a b), we use the term '(p a b) or, equivalently,

(quote (p a b)).

With a way of referring to expressions, we can assert their properties. For example,

the following sentence ascribes to the individual named john the belief that the moon is

made of a particular kind of blue cheese.

(believes john '(material moon stilton))

Note that, by nesting quotes within quotes, we can talk about quoted expressions. In

fact, we can write towers of sentences of arbitrary heights, in which the sentences at each
level talk about the sentences at the lower levels.

Since expressions are first-order objects, we can quantify over them, thereby asserting

properties of whole classes of sentences. For example, we could say that Mary believes

everything that John believes. This fact together with the preceding fact allows us to

conclude that Mary also believes the moon to be made of blue cheese.

(=> (believes john ?p) (believes mary ?p))
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The second way of referring to expressions is KIF is to use the listof function. For

example, we can denote a complex expression like (p a b) by a term of the form (listof

'p 'a 'b), as well as '(p a b).

The advantage of the listof representation over the quote representation is that

it allows us to quantify over parts of expressions. For example, let us say that Lisa is

more skeptical than Mary. She agrees with John, but only on the composition of things.

The first sentence below asserts this fact without specifically mentioning moon or stilton.

Thus, if we were to later discover that John thought the sun to be made of chili peppers,

then Lisa would be constrained to believe this as well.

(=> (believes john (listof 'material ?x ?y))

(believes lisa (listof 'material ?x ?y)))

While the use of listof allows us to describe the structure of expressions in arbitrary

detail, it is somewhat awkward. For example, the term (listof 'material ?x ?y) is

somewhat awkward. Fortunately, we can eliminate this difficulty using backquote and

comma. Rather than using the listof

expression preceded by the backquote

of any subexpression that is not to be

preceding sentence as follows.

function constant as described above, we write the

character ' and add a comma character , in front

taken literally. For example, we would rewrite the

(=> (believes john '(material ,?x ,?y))

(believes lisa '(material ,?x ,?y)))

This approach is particularly nice in that it parallels the treatment of quoting and

unquoting in Common Lisp. However, a warning is in order. All Common Lisps translate

quoted expressions into lists with quote as the first element, e.g. ' (f a) translates into

(quote (f a)). However, not all Common Lisps are consistent in the handling of back-

quote. Some Lisps translate backquoted expressions into internal forms involving listof,

e.g. ' (f ,?x) translates into (listof 'f ?x). Some use cons, e.g. (cons 'f (cons ?x

nil)). Some use neither or a mixture. This does not prohibit our using the approach in

KIF, but it means that we cannot rely on all Lisp readers to produce the internal form we

want.

§9.2 Formalizing Syntax

In order to facilitate the encoding of knowledge about KIF, the language includes type

relations for the various syntactic categories defined in chapter 2.

For every individual variable v, there is an axiom asserting that it is indeed an indi-

vidual variable. Each such axiom is a defining axiom for the indvar relation.

(indvar (quote v)) (9.1)

For every sequence variablew, there isan axiom assertingthat itisa sequence variable.

Each such axiom is a defining axiom for the seqvar relation.

(seqvar (quote w)) (9.2)

(defrelation termop (?x) :=
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(member 7x (setof 'quote 'if 'cond 'the 'setof

'kappa 'lambda) )) (9.3)

(defrelation sentop (?x) :=

(member ?x (setof 'not 'and 'or '=> '<= '<=> 'forall 'exists))) (9.4)

(defrelation ruleop (?x) := (member ?x (setof '=>> '<<=))) (9.5)

(defrelation defop (?x) :=

(member ?x (setof 'defobject 'deffunction 'defrelation ':=

':=> ':axiom ':conservative-axiom))) (9.6)

For every constant a, there is an axiom asserting that it is a constant. Each such

axiom is a defining axiom mr the constant relation. The category of each constant is

determined _om its definition and/or the uses of the constant in a knowledge base.

(defrelation constant (constant (quote $\sigma$))) (9.7)

From these basic vocabularyitems, we define variables, operators, words, and expres-

sions.

(defrelation variable (?x) := (or (indvar ?x) (seqvar ?x))) (9.8)

(defrelation operator (?x) :=

(or (termop ?x) (sentop ?x) (ruleop ?x) (defop ?x))) (9.9)

(defrelation word (?x) :=

(or (variable ?x) (operator ?x) (constant ?x))) (9.10)

(defrelation expression (?x) :=

(or (word ?x)

(and (list ?x)

(forall (?y) (=> (item ?y ?x) (expression ?y)))))) (9.11)

The sentence (term r) is true ifand only ifthe object denoted by r is a term, i.e.it

is either a constant, a variable, functionM term, a list term, a set term, a quoted term, a

logical term, or a quantified term.

(defrelation term (?x) :=

(or (indvar ?x) (objconst ?x) (funconst ?x) (relconst ?x)

(funterm ?x) (listterm ?x) (setterm ?x) (quoterm ?x)

(logterm ?x) (quanterm ?x))) (9.12)

(defrelation funterm (?x) :=

(exists (?f ?tlist)

(and (funconst ?f)

(list ?tlist)

(=> (item ?t ?tlist) (term ?t))
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(= ?x (cons ?f ?tlist))))) (9.13)

(defrelation listterm (?x) :=

(exists ?tlist

(and (list ?tlist)

(=> (item ?t ?tlist) (term ?t))

(= ?x (cons 'listof ?tlist)))))

(defrelation setterm (?x) :=

(exists ?tlist

(and (list ?tlist)

(=> (item ?t ?tlist) (term ?t))

(= ?x (cons 'setof ?tlist)))))

(defrelation (?x) :=

(exists (?e)

(and (expression ?e)

(= ?x '(quote ,?e)))))

(defrelation logterm (?x) :=

(or (exists (?pl ?tl)

(and (sentence ?pl) (term ?tl) (= ?x ((if ,?pl ,?tl))))

(exists (?pl ?tl ?t2)

(and (sentence ?pl)

(term ?tl)

(term ?t2)

(= ?x '(if ,?pl ,?tl ,?t2))))

(exists ?clist

(and (list ?clist)

(=> (item ?c ?clist)

(exists (?p ?t)

(and (sentence ?p) (term ?t)

(= ?c (listof ?p ?t)))))

(= ?x (cons 'cond ?clist))))))

(defrelation quanterm (?x) :=

(or (exists (?t ?p)

(and (term ?t) (sentence ?p)

(= ?x (listof 'the ?t ?p))))

(exists (?t ?p)

(and (term ?t) (sentence ?p)

(= ?x (listof 'setof ?t ?p))))

(exists (?vlist ?p)

(and (list ?vlist) (sentence ?p)

(>= (length ?vlist) i)

(9.14)

(9.15)

(9.16)

(9.17)
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(=> (item ?v ?vlistp) (indvar ?v))

(= ?x (listof 'kappa ?vlistp ?p))))

(exists (?vlist ?sv ?p)

(and (list ?vlist) (seqvar ?sv) (sentence ?p)

(=> (item ?v ?vlist) (indvar ?v))

(= ?x (listof 'kappa (append ?vlist (listof ?sv)) ?p))))

(exists (?vlist ?t)

(and (list ?vlist) (term ?t)

(>= (length ?vlist) I)

(=> (item ?v ?vlistp) (indvar ?v))

(= ?x (listof 'lambda ?vlistp ?t))))

(exists (?vlist ?sv ?t)

(and (list ?vlist) (seqvar ?sv) (sentence ?t)

(=> (item ?v ?vlist) (indvar ?v))

(= ?x (listof 'lambda

(append ?vlist (listof ?sv))

?t)))))) (9.18)

The sentence (sentence r) is true if and only if the object denoted by r is a sentence,

i.e. it is either a logical constant, a relational sentence, a logicM sentence, or a quantified

sentence.

(defrelation sentence (?x) :=

(or (logconst ?x) (relsent ?x) (equation ?x)

(inequality ?x) (logsent ?x) (quantsent ?x))) (9.19)

(defrelation relsent (?x) :=

(exists (?r ?tlist)

(and (or (relconst ?r) (funconst ?r)) (list ?tlist)

(>= (length ?tlist) i)

(=> (item ?t ?tlist) (term ?t))

(= ?x (cons ?r ?tlist))))) (9.20)

(defrelation equation (?x) :=

(exists (?tl ?t2)

(and (term ?tl) (term ?t2)

(= ?x '(= ,?tl ,?t2))))) (9.21)

(defrelation inequality (?x) :=

(exists (?tl ?t2)

(and (term ?tl) (term ?t2)

(= ?x '(/= ,?tl ,?t2))))) (9.22)

(defrelation logsent (?x) :=

(or (negation ?x) (conjunction ?x) (disjunction ?x)

(implication ?x) (reverse-implication ?x)
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(equivalence ?x))) (9.23)

(defrelation negation (?x) :=

(exists (?p)

(and (sentence ?p)

(= ?x '(not ,?p))))) (9.24)

(defrelation conjunction (?x) :=

(exists ?plist

(and (list ?plist)

(>= (length ?plist) I)

(=> (item ?p ?plist) (sentence ?p))

(= ?x (cons 'and ?plist))))) (9.25)

(defrelation disjunction (?x) :=

(exists ?plist

(and (list ?plist)

(>= (length ?plist) I)

(=> (item ?p ?plist) (sentence ?p))

(= ?x (cons 'or ?plist))))) (9.26)

(defrelation implication (?x) :=

(exists (?plist)

(and (list ?plist)

(>= (length ?plist) 2)

(=> (item ?p ?plist) (sentence ?p))

(= ?x (cons '=> ?plist))))) (9.27)

(defrelation reverse-implication (?x) :=

(exists (?plist)

(and (list ?plist)

(>= (length ?plist) 2)

(=> (item ?p ?plist) (sentence ?p))

(= ?x (cons '<= ?plist))))) (9.28)

(defrelation equivalence (?x) :=

(exists (?pl ?p2)

(and (sentence ?pl)

(sentence ?p2)

(= ?x '(<=> ,?pl ,?p2))))) (9.29)

(defrelation quantsent (?x) :=

(or (exists (?v ?p)

(and (indvar ?v) (sentence ?p)

(or (= ?x (listof 'forall ?v ?p))
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(= ?x (listof 'exists ?v ?p)))))

(exists (?vlist ?p)

(and (list ?vlist) (sentence ?p)

(>= (length ?vlist) i)

(=> (item ?v ?vlist) (indvar ?v))

(or (= ?x (listof 'forall ?vlist ?p))

(= ?x (listof 'exists ?vlist ?p))))))) (9.30)

§9.3 Changing Levels of Denotation

The vocabulary introduced in the preceding subsection allows us to encode properties

of expressions in and of themselves. In this section, we add some vocabulary that allows

us to change levels of denotation, i.e. to relate expressions about expressions with the

expressions they denote.

The term (denotation r) denotes the object denoted by the object denoted by r. A

quotation denotes the quoted expression; the denotation of any other object is _1_.

The term (name r) denotes the standard name for the object denoted by the term

7-. The standard name for an expression r is (quote r); the standard name for a non-

expression is at the discretion of the user. (Note that there are only a countable number

of terms in KIF, but there can be models with uncountable cardinality; consequently, it is

not always possible for every object in the universe of discourse to have a unique name.)

The final level-crossing vocabulary item is the relation constant true. For example, we

can say that a sentence of the form (=> (p ?x) (q ?x)) is true by writing the following

sentence.

(true '(=> (p ?x) (q ?x)))

This may seem of limited utility, since we can just write the sentence denoted by the

argument as a sentence in its own right. The advantage of the metanotation becomes

clear when we need to quantify over sentences, as in the encoding of axiom schemas. For

example, we can say that every sentence of the form (=> ¢ ¢) is true with the following

sentence.

(=> (sentence ?p) (true '(=> ,?p ,?p)))

Semantically, we would liketo say that a sentence of the form (true '¢) is true if

and only if the sentence ¢ is true. In other words, for any interpretation and variable

assignment, the truth value ti,,((true ' ¢)) is the same as the truth value ti.(¢). In other

words, for every truth function ti_, true is our language's name for tiv.

Unfortunately, this causes serious problems. Equating a truth function with the mean-

ing it ascribes to true quickly leads to paradoxes. The English sentence "This sentence is

false." illustrates the paradox. We can write this sentence in KIF as shown below. The

sentence, in effect, asserts its own negation.

(true (subst (name '(subst (name x) 'x C(true ,x)))

c x

'(not (true (subst (name x) Cx '(not (true ,x)))))))
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For any truth function tiv that maps true to itself, we get a contradiction. If ti_ of

this sentence is true, then by the rules for assignment of the logical operators contained in

the sentence, we see that tiv must make the sentence false. If ti_ assigns the value false,

then, again by the rules for assignment of the logical operators, we see that it must assign

it the value true. In either case, we get a contradication.

Fortunately, we can circumvent such paradoxes by slightly modifying the definition

of true. The treatment here follows that of Kripke, Gilmore, and Perlis. Although the

approach is a little complicated, it is nice in that the intuitive interpretation of true is in

all important cases exactly what we would guess, yet paradoxes are completely avoided.

(<=> (true ¢) ¢*) (9.31)

Given a sentence ¢, we define ¢* to be the sentence obtained from ¢ as follows. If the

sentence is logical, then all occurrences of not are pushed inside other operators. If the

sentence is (not (true r)), the ¢* is (true (lister 'not r)).

Since the truth of a sentence (true ¢) is determined by the truth value of ¢*, not ¢,

the potential for paradoxes is eliminated. For most sentences, ¢* and ¢ are the same. For

apparently paradoxical sentences, the two differ and so no contradiction arises. (See Perlis

for the description of a model for databases containing this axiom schema.)
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Chapter 10

Nonmonotonicity

Many knowlege representation and reasoning systems are capable of drawing conclu-

sions based on the absence of knowedge from a database. This is nonmonotonic reasoning.

The addition of new sentences to the database may be cause for the system to retract

earlier conclusions.

In some systems, the exact policy for deriving nonmonotonic conclusions is built into

the system. In other systems, the policy can be modified by its user, though rarely within

the system's knowledge representation language (e.g. by selecting which predicates to

circumscribe). Since KIF is a knowledge representation language and not a system, it is

necessary to provide means for its user to express his nomonotonic reasoning policy within

the language itself.

We use default rules for this purpose. For instance, the following default rule expresses

that an object can be assumed to fly if this object is known to be a bird and it is consistent
to assume that it flies.

(<<= (flies ?x) (bird ?x) (consis (flies ?x)))

The use of consis is the only source of nonmonotonicity in KIF. Accordingly, a

rule without justifications will be called monotonic. This particularly simple case will be

discussed first.

§10.1 Monotonic Rules

A monotonic rule is an expression of the following form or its reverse (using =>>,

where ¢, ¢1,..., Cn are sentences.

(<<= ¢ ¢1 ... ¢.),

Such an expression should be distinguished from an implication like the following.

(<= ¢ ¢1 ... ¢.)

Athough sentences can be monotonic rules, monotonic rules are not sentences; they

are similar to inference rules, familiar from elementary logic. If, for instance, A consists

of some sentences A0 and one rule (<<= _b ¢), where ¢ and _b are sentences without free

variables, then the set of sentences entailed by A is the smallest set of sentences which (i)

contains A0, (ii) is closed under logical entailment, and (iii) contains g, provided that it

contains ¢. It is not generally true that this set contains the implication (<= _b ¢).

The rationale for using monotonic rules in knowledge representation, instead of im-

plications, is twofold. On the one hand, the "directed" character of rules can simplify

the task of developing efficient inference procedures. On the other hand, in some cases,

replacing <<= by <= would be semantically unacceptable. For instance, the rules

(<<= (status-known ?x) (citizen ?x))
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(<<= (status-known ?x) (not (citizen ?x)))

allow us to infer (status-known Joe) only ifone of the sentences

(citizen Joe), (not (citizen Joe))

can be inferred. Replacing the rules by implications would make (status-known

identically true.

?x)

§10.2 Logic Programs

A pure Prolog rule

(_:-@l,.-.,@n

where ¢, ¢1,..., Cn are atoms, can be viewed as a syntactic variant of the monotonic rule

(<<= ¢ ¢1 ... ¢.)

except for two important details. First, the declarative semantics of Prolog applies the

unique names aasumption to its ground terms. If, for example, the program contains no

function constants, then this assumption can be expressed by the sentences

(not (= al a2))

for all distinct object constants al, a2 in the language of the program. Second, this

semantics applies the closed world assumption to each relation. For a relation constant a,

this assumption can be expressed by the following rule.

(<<= (not (a ¢1)) (consis (not (a ©1))))

A pure Prolog program can be translated into KIF by appending to it (i) the sentences

expressing the unique names assumption, and (ii) the default rules expressing the closed

world assumption.

This method can be easily extended to programs with negation as failure. A negative

subgoal not ¢ is represented in KIF by the premise (consis (not ¢)). (Adding consis

is necessary because, in KIF, not represents classical negation, rather than negation as

failure.)

§10.3 Circumscribing Abnormality

Extending a set of sentences by the closed world assumption for some relation constant

a, expressed by a default rule as shown above, has the sazne effect as circumscribing a

(with all object, function and relation constants varied). In particular, circumscribing

abnormality can be expressed by the default rule

(<<= (not (ab ?aspect ?x)) (consis (not (ab ?aspect ?x))))

Consider, for instance, the nonmonotonic database that contains, in addition to this

standard default, two facts.
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(bird tweety)

(<= (flies ?x) (bird ?x) (not (ab aspectl ?x)))

Birds fly unless they are abnormal in aspectl). This database nonmonotonically

entails the conclusion that everything is not abnormal, including tweety:

(not (ab ?x))

From this, we can conclude that tweety flies.

Suppose, on the other hand, that our database includes also the fact that tweety is

abnormal in aspectl:

(ab aspectl Tweety)

In this case, we can no longer infer that tweety is not abnormal, and, therefore, we

cannot conclude that tweety is a flier. Note, however, that we have not asserted that

tweety cannot fly; we have only prevented the default rule from taking effect in this case.
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Chapter 11

Definitions

KIF includes a set of definition operators for declaring the category and defining ax-

ioms (e.g. "Triangles have 3 sides.") for constants. Such analytic definition_ are intended

for use in specifying representation and domain ontologies, and are in contrast to met-

alinguistic substitutional definition, that specify new object level syntax in a macro-like

fashion.* KIF definitions can be complete in that they specify an expression that is equiv-

alent to the constant, or partial in that they specify a defining axiom that restricts the

possible denotations of the constant. Partial definitions can be either unrestricted or con-

servative extensions to the language. Conservative definitions are restricted in that adding

the defining axioms they specify to any given collection of sentences not containing the

constant being defined does not logically entail any additional sentences not containing

the constant being defined. [Enderton 72].

An analytic definition associates with the constant being defined a defining aziom.

Intuitively, the meaning of a definition is that its defining axiom is true and that its

defining axiom is an analytic truth. Analytic truths are considered to be those sentences

that are logically entailed from defining axioms. For example, term subsumption in the

KL-ONE family of representation languages is an analytic truth in that it is determined

solely on the basis of term definitions. The notions of defining axiom and analytic truth

are formally defined as follows.

Given a knowledge base A, the sentence (defining-axiom 'a '¢) means that there

is in A an analytic definition of constant a which specifies sentence ¢ as a defining axiom

of constant a. Moreover, defining axioms are true. That is, the following axiom schema
holds:

(=> (defining-axiom 'a '¢) ¢)

Given a knowledge base A, the sentence (analytic-truth '¢) means that the sen-

tence ¢ is logically entailed by the defining axioms of the definitions in knowledge base
A.

§11.1 Complete Definitions

Complete definitions specify an equivalent term or sentence for the constant being

defined as described below. If a constant has a complete definition in a knowledge base,

then no other definition for that constant may occur in the knowledge base. Complete

definitions are guaranteed to be conservative extensions of the language.

The following table shows the defining axiom specified by each form of complete
definition:

* KIF 3.0 does not provide facilities for substitutional definitions. Consideration is being

given to including them in later versions of the language.
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Definition Defining Axiom
(defobject o := r) (= _ r)

(deffunction 7r (ul ... un [w]) := r) (= 7r (lambda (Ul ... v. [w]) r))

(defrelation p (Ul ... u. [_]) := 4) (= p (kappa (Ul ... un [w]) 4))

Object constants are defined using the defobject operator. In the complete defini-

tion of an object constant, the first argument, cr, is the constant being defined, and the

argument, r, following the := keyword, is a term. For example, the following definition

defines the constant origin to be the list (0,0,0).

(defobject origin := (listof 0 0 0))

The defining axiom specified by this definition of origin is:

(= origin (listof 0 0 0))

Function constants are defined using the deffunction operator. In the complete

definition of a function constant, the first argument, zr, is the constant being defined, the

second argument is a list of individual variables with an optional final sequence variable

specifying the arguments of the function, and the argument, r, following the := keyword is

a term. For example, the following definition defines the function paternal-grandfather
in terms of the father function.

(deffunction paternal-grandfather (?x) := (father (father ?x)))

The defining axiom specified by this definition of paternal-grandfather is:

(= paternal-grandfather (lambda (?x) (father (father ?x))))

Relation constants are defined using the defrelation operator. In the complete

definition of a relation constant, the first argument, p, is the constant being defined, the

second argument is a list of individual variables with an optional final sequence variable

specifying the arguments of the relation; and the argument, 4, following the := keyword,

is a sentence. For example, the following sentence defines a bachelor to be an unmarried

man.

(defrelation bachelor (?x) := (and (man ?x) (not (married ?x))))

The defining axiom specified by this definition of bachelor is:

(= bachelor (kappa (?x) (and (man ?x) (not (married ?x)))))

§11.2 Partial Definitions

A constant can have multiple partial definitions, each of which restricts the possible

denotations of the constant. All the definitions of a constant must declare the constant to

be the same category; i.e., they must all use the same operator - def0bject, deffunc-

tion, or defrelation. The defining axioms specified by partial definitions can be either

unrestricted or optionally required to be conservative extensions to the language.
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Unrestricted Partial Definitions

Unrestricted partial definitions can specify any sentence as a defining axiom, as de-

scribed below. The following table shows the defining axiom specified by each form of

unrestricted partial definition:

Definition Defining Axiom

(defobject a 41 --. 4n) (and 41 ... 4n)

(deffunction _ 41 ... 4n) (and 41 .-- 4n)

(defrelation p 41 ... 4n) (and _I ... 4n)

(defrelation p (ul ... u.) (and (=> (member ?x p) (= (length ?x) n))

:=> 41 :axiom 42) (=> (p Ul ... un) 41)

42)

(defrelation p (Ul ... un w) (and (=> (member ?x p) (>= (length ?x) n))

:=> 41 :axiom 42) (=> (p ul ... un w) 41)

45)

In an unrestricted partial definition of an object constant, the first argument, _, is

the constant being defined, and the remaining arguments, 41 ... 4,, are sentences. For

example, the following definition defines the constant id to be a left and right identity for

the binary function f.

(defobject id (= (f ?x id) ?x) (= (fid ?x) ?x))

The defining axiom specified by this definition of id (which is just the

conjunction of the second and third arguments in the definition) is unrestricted in

that it may contradict other partial definitions of id and f may not have a left and right

identity.

In an unrestricted partial definition of a function constant, the first argument, zr,

is the constant being defined and the remaining arguments, 41 ... 4,, are sentences. For

example, the following definition defines f to be a function which has a value that is greater
than 1 for all numbers.

(deffunction f (=> (number ?y) (> (f ?y) i)))

The defining axiom specified by this definition of f is just the implication that is the

second argument in the definition.

There are two basic forms of unrestricted partial definitions for relations. Both forms

allow inclusion of an arbitrary sentence to be a defining axiom for the constant being

defined. The second form additionally provides for the specification of necessary conditions

for the relation to hold. The second form has two variants, depending on whether a

sequence variable is included in the function's argument list.

In the first form of unrestricted partial definition of a relation constant, the first

argument, p, is the constant being defined and the remaining arguments, 41 .-- 4,, are
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sentences. For example, the following definition defines R to be a relation that holds for

all single arguments that are positive numbers.

(defrelation R (=> (> ?z 0) (R ?z)))

The defining axiom specified by this definition of R is just the implication that is the

second argument in the definition.

In the second form of unrestricted partial definition of a relation constant, the first

argument, p, is the constant being defined, the second argument is a list of individual

variables specifying the arguments of the relation, and the arguments, ¢1 and 62, following

the :=> and :axiom keywords, are sentences. The form has two variants, depending on

whether the argument list includes a sequence variable. The following is an example of

this form of definition in which above is defined to be a binary transitive relation that

holds only for "located objects".

(defrelation above (?bl ?b2)

:=> (and (located-object ?bl)

:axiom (transitive above))

(located-object ?b2))

The defining axiom specified by this definition of above is:

(and (=> (member ?x above) (= (length ?x) 2))

(=> (above ?bl ?b2)

(and (located-object ?bl) (located-object ?b2)))

(transitive above))

Conservative Partial Definitions

Conservative partial definitions specify defining axioms that are conservative exten-

sions of the language. A defining axiom is a conservative extension if adding it to any

given collection of sentences not containing the constant being defined does not logically

entail any additional sentences not containing the constant being defined. The defining

axioms specified by complete definitions and the defining axioms produced directly from

some forms of partial definitions are necessarily conservative extensions. However, the ar-

bitrary sentences that can be included in partial definitions are not in general conservative

extensions of the language and therefore must be transformed into a conditional form of

defining axiom that is guaranteed to be conservative. If a knowledge base contains con-

servative partial definitions containing arbitrary sentences for a given constant, then those

definitions specify a single conditional defining axiom for that constant as described below.

The following table shows the defining axiom(s) specified by each form of conservative

partial definition:
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Definition Defining Axiom
(defobject a) (objconst (quote a))

(defobject a :conservative-axiom _) The conditional defining aziom for cr

(deffunction _) (funconst (quote _))

(deffunction 7r :conservative-axiom _) The conditional defining aziom for 7r

(defrelation p) (relconst (quote p))

(defrelation p :conservative-axiom q_) The conditional defining aziora for p

(defrelation p (ul ... u.) :=> _I) (and (=> (member ?x p)

(= (length ?x) n))

(=> (p vl ... v.) _1))

(defrelation p (vl ... Vn w) :=> _1) (and (=> (member ?x p)

(>= (length ?x) n))

(=> (p vl ... v. w) _1))

(defrelation p (ul ... un)

:=> _1 :conservative-axiom _2)

(and (=> (member ?x p)

(= (length ?x) n))

(=> (p vl ... v.) c_1) )

The conditional defining aziora for p

(defrelation p (Ul ... un w)

:=> _I :conservative-axiom _2)

(and (=> (member ?x p)

(>= (length ?x) n))

(=> (p Vl ... Vn _) _1))

The conditional defining aziomfor p

There are two forms of conservative partial definitions for objects. In the first form,

the argument, a, is the constant being defined, and the definition simply declares that the

constant denotes an object. In the second form, the first argument, a, is the constant being

defined, and the argument, _b, following the :conservative-axiom keyword is a sentence.

The second form of definition provides a sentence to be included in the conditional defining

axiom for e, as described below.

There are two forms of conservative partial definitions for functions. In the first form,

the argument, _r, is the constant being defined, and the definition simply declares that the

constant denotes a function. In the second form, the first argument, zr, is the constant being

defined and the argument, q_, following the :conservative-axiom keyword is a sentence.

The second form of definition provides a sentence to be included in the conditional defining

axiom for 7r, as described below.

There are three basic forms of conservative partial definitions for relations. In the first

form, the argument, p, is the constant being defined, and the definition simply declares
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that the constant denotes a relation. In the secondform, the first argument, p, is the

constant being defined and the argument, ¢, following the :conservative-axiom keyword

is a sentence. The second form of definition provides a sentence to be included in the

conditional defining axiom for p as described below.

The third form of conservative partial definition of a relation constant provides for

the specification of necessary conditions for the relation to hold and optionally provides

an arbitrary sentence to be included in the constant's conditional defining axiom. The

third form has four variants, depending on whether the optional sentence is included and

whether a sequence variable is included in the function's argument list.

In the third form of conservative partial definition of a relation constant, the first

argument, p, is the constant being defined; the second argument is a list of individual

variables with an optional final sequence variable, w, specifying the arguments of the

relation; ¢1, in the keyword-argument pair, :=> ¢1, is a sentence; and ¢2, in the optional

final keyword-argument pair, :conservative-axiom ¢2, is a sentence. For example, the

following definition defines a person to necessarily be a mammal.

(defrelation person (?x) :=> (mammal ?x))

The defining axiom produced by this definition of person is:

(and (=> (member ?x person) (= (length ?x) I))

(=> (person ?x) (mammal ?x)))

The sentences following the keyword :conservative-axiom in allof the partialdefi-

nitions for a given constant are used to form a single conservative defining axiom for that

constant. The defining axiom essentially states that if an entity exists in the domain of

discourse having all the properties ascribed to the constant by its definitions, then the

constant denotes such an entity and the sentences in the constant's definitions following

the keyword :conservative-axiom are true. That defining axiom is formed as follows.

For a given knowledge base A and a given constant a, let ¢1 ,...,¢i be the sentences fol-

lowing the keyword : conservative-axiom in partial definitions of a in ,%, and ¢i+1,...,¢,,

be the defining axioms otherwise specified in partial definitions of a in A. The sentences

¢1,...,¢i specify the following conservative defining axiom:

(=> (exists ?x q_l(=--?z) "-" q)n(e--?z))

(and ...

where ?x is an individual variable that does not occur in any $j, and for each j =

1,... ,n, 4j(_,-?x) is $j with the following substitutions:

Each occurrence of ¢r as a term is replaced by ?x.

Each occurrence of (c_ <args>) as a function term is replaced by (value ?x <args>).

Each occurrence of (or <args>) as a relational sentence is replaced by (holds ?x

<args>).

This form of defining axiom cannot introduce an inconsistency into a knowledge base

since any inconsistency will occur in the antecedent of the implication, thus making the

antecedent false and blocking the entailment of the consequent. Also, this form of defining

axiom cannot introduce a new domain fact about other constants (e.g., (color Clyde
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grey)), since such a domain fact will occur in the antecedentof the defining axiom and
will therefore block the implication of the consequentif it is not already true.

Note that, in general, a constant can have infinitely many par.tial definitions (meta-
linguistically specifiedby a definition schema). However, if any of the partial definitions
of a constant contain a sentence following the keyword :conservative-axiom, then the

constant must have only a finite number of definitions. Otherwise, the conditional defining

axiom for that constant would be an infinitely long sentence, which is not allowed in KIF.

As an example of conservative partial definitions containing arbitrary sentences, con-

sider the following conservative version of the definition given above of id, a left and right

identity for f.

(defobject id :conservative-axiom (= (f ?x id) ?x))

(defobject id :conservative-axiom (= (f id ?x) ?x))

Assuming there are no other definitions of id in the knowledge base, these two partial

definitions produce a single defining axiom for id as follows:

(=> (exists ?y (and (= (f ?x ?y) 7x) (= (f ?y ?x) ?x)))

(and (= (f ?x id) ?x) (= (f id ?x) ?x)))

This axiom states that if there exists a left and right identity for f, then ±d is that

identity.

The following table summarizes all the forms of KIF definitions and the defining

axioms specified by each.
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Definition Defining Axiom

(defobject ff := r)

(defobject a ¢1 ... ¢n)

(defobject a)

(defobject a :conservative-axiom ¢)

(deffunction _ (ul ...

(deffunction _ ¢i ...

(deffunction _)

(deffunction _ :conservative-axiom ¢)

(defrelation p (l]I ...

(defrelation p 41 .-.

(defrelat ion p)

(defrelation p :conservative-axiom 4)

(defrelation p (u] ... Un)

:=> ¢I [:axiom ¢2])

(defrelation p (Ul ... Vn co)

:=> 41 [:axiom ¢2])

(defrelation p (vl ... v.)

:=> 41 [:conservative-axiom ¢2])

(defrelation p (u] ... un a;)

:=> ¢I [:conservative-axiom 42])

(= G T)

(and ¢I ... ¢.)

(objconst (quote a))

The conditional defining axiom for a

(= 7r (lambda (ul ... u. [aJ]) r))

(and ¢/)1 "'" Cn)

(funconst (quote _))

The conditional defining axiom for 7r

(= p (kappa (ul ... u. [w]) ¢))

(and 41 ..- Cn)

(relconst (quote p))

The conditional defining axiom for p

(and (=> (member ?x p) (= (length ?x) n))

(=> (p vl ... u.) ¢I))
[4_] )

(and (:> (member ?x p) (>: (length ?x) n))

(:> (p ul ... u. w) ¢i))
[¢2])

(and (:> (member ?x p) (: (length ?x) n))

(:> (p ul ... u.) ¢i))

[The conditional defining axiom�or p]

(and (:> (member ?x p) (>= (length ?x) n))

(:> (p ul ... u. _) ¢i))
[The conditional defining axiom/or p]
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Chapter A

Abstract Algebra

This appendix contains an ontology for the basic concepts in abstract algebra. The

first section gives properties of binary functions. The second section does the same for

binary relations. In the third section, these properties are used in defining the a variety of

common algebraic structures.

§A.1 Binary Operations

(defrelation binop (?f 7s) :=

(and (binary-function ?f)

(subset (universe ?f) ?s))) (A.I)

(defrelation associative (?f ?s) :=

(forall (?x ?y ?z)

(=> (member ?x ?s) (member ?y ?s) (member ?z ?s)

(= (value ?f ?x (value ?f ?y ?z))

(value ?f (value ?f ?x ?y) ?z))))) (A.2)

(defrelation commutative (?f ?s) :=

(forall (?x ?y)

(=> (member ?x ?s) (member ?y ?s)

(= (value ?f ?x ?y) (value ?f ?y ?x))))) (A.3)

(defrelation invertible (?f To ?s) :=

(forall (?x)

(=> (memberp ?x ?s)

(exists (?y)

(and (member ?y ?s)

(= (value ?x ?y) 7o) (= (value ?y ?x) 70)))))) (A.4)

(defrelation distributes (?f ?g ?s) :=

(and (binop ?f ?s) (binop ?g ?s)

(forall (?x ?y ?z)

(=> (member ?x ?s) (member ?y ?s) (member ?z ?s)

(= (value ?f (value ?g ?x ?y) ?z)

(value ?g (value ?f ?x ?z)

(value ?f ?y ?z))))))) (A.5)

§A.2 Binary Relations

(defrelation binrel (?r ?s) :=

(and (binary-relation ?r)
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(subset (universe ?r) ?s))) (A.6)

(defrelation reflexive (?r ?s) :=

(and (binrel ?r ?s)

(forall ?x (=> (member ?x ?s)

(holds ?r ?x ?x)))))

(defrelation irreflexive (?r ?s) :=

(and (binrel ?r 7s)

(forall (?x)

(=> (member 7x ?s) (not (holds ?r ?x ?x))))))

(defrelation symmetric (?r ?s) :=

(and (binrel ?r ?s)

(forall (?x ?y) (=> (holds ?r ?x ?y) (holds ?r ?y ?x)))))

(defrelation asymmetric (?r ?s) :=

(and (binrel ?r ?s)

(forall (?x ?y) (=> (holds ?r ?x ?y))

(not (holds ?r ?y ?x))))))

(defrelation antisymmetric (?r ?s) :=

(and (binrel ?r ?s)

(forall (?x ?y)

(=> (holds ?r ?x ?y) (holds 7r 7y ?x) (= ?x ?y)))))

(defrelation trichotomizes (?r ?s) :=

(and (binrel ?r ?s)

(forall (?x ?y)

(=> (member 7x ?s) (member 7y ?s)

(or (holds ?r 7x ?y)

(= ?x ?y)

(holds ?r ?y ?x))))))

(defrelation transitive (?r ?s) :=

(and (binrel ?r ?s)

(forall (?x ?y ?z)

(=> (holds 7r ?x 7y) (holds ?r 7y 7z)

(holds ?r ?x ?z)))))

(A.7)

(A.8)

(A.9)

(A.IO)

(A.12)

(A.13)

§A.3Algebraic Structures

(defrelation semigroup (?s ?f 70) :=

(and (binop ?f ?s)
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(associative ?f ?s)

(identity 7o ?f ?s))) (A.14)

(defrelation abelian-semigroup (?s Tf To) :=

(and (semigroup Ts ?f To)

(commutative Tf Ts))) (A.15)

(defrelation group (?s ?f 7o) :=

(and (binop ?f Ts)

(associative ?f Ts)

(identity To Tf Ts)

(invertible Tf To ?s))) (A.16)

(defrelation abelian-group (?s ?f 7o) :=

(and (group ?s ?f 7o)

(commutative Tf ?s))) (A.17)

(defrelation ring (?s ?f To Tg ?i) :=

(and (abelian-group ?s ?f To)

(semigroup ?s Tg ?i)

(distributes ?g Tf ?s)))

(defrelation commutative-ring (?s ?f ?o ?g Ti) :=

(and (abelian-group Ts ?f 7o)

(abelian-semigroup Ts Tg Ti)

(distributes ?g ?f ?s))) (A.19)

(defrelation integral-domain (Ts Tf 7o Tg Ti) :=

(and (commutative-ring Ts Tf To Tg ?i)

(operation Tg (difference Ts (setof To))))) (A._0)

(defrelation division-ring (?s Tf To ?g Ti) :=

(and (ring Ts Tf To Tg Ti)

(binop ?g (difference ?s (setof To)))

(invertible Tg (difference Ts (setof To))))) (A.21)

(defrelation field (Ts Tf To Tg Ti) :=

(and (division-ring ?s ?f To Tg Ti)

(commutative Tf ?s))) (A.22)

(defrelation partial-order (?s ?r) :=

(and (irreflexive Tr ?s)

(asymmetric Tr ?s)

(transitive Tr Ts))) (A.23)

67



(defrelation linear-order (?s ?r) :=

(and (irreflexive ?r ?s)

(asymmetric ?r ?s)

(transitive ?r ?s)

(trichotomizes ?r ?s))) (A.24)
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1 Overview

This is the KRSS group specification for description-logic-based KR systems.

It describes the required behavior for compliant KR systems. This report is

not an overview of description logics, nor is it a rationale for using description

logics in knowledge representation.

The description logic in this specification is based closely on the descrip-

tion logic defined by researchers at DFKI [?]. However, it includes several

other features, notably role closures and rules.

A knowledge base in this specification is a sequence of statements. The

semantics of non-rule, non-closure statements is similar to that in the DFKI

proposal. The semantics of role closures is determined by replacing them, in

sequence, with the best derivable role maximum or the derivable set of fillers.

Rules are treated as epistemic statements, in line with their treatment by

Donini el al [?].

Compliant implementations are required to parse the entire language, but

may replace constructs that they cannot reason about with the closest ap-

proximation that they can handle. Compliant implementations are required



to be completeon a subsetof the logic, selectedfor its easy,but non-trivial,
inferences.

2 Syntax

Major parts of the syntax of knowledge bases are taken from [?]. The top-

level syntactic categories in the specification are descriptions, statements,

knowledge bases, and inquiries.

Throughout the specification, C, R, A, I, CI, and S, possibly subscripted,

are concepts, roles (including attributes), attributes, individuals, concrete in-

dividuals, and assertions, respectively; N, CN, RN, AN, IN, AIN, DIN, XN, and

GN, possibly subscripted, are names of any sort, concept names, role names

(including attribute names), attribute names, individual names, anonymous

individual names, distinct individual names, rule names, and group names,

respectively; QQ and RR are queries and retrievals, respectively. The syntax

of names, numbers, integers, and strings are the same as in LISP.

The three kinds of descriptions in the specification are concepts, roles

(including attributes), and individuals. Concepts are either concept names

or are formed using the operators in Table ??.1 Roles (attributes) are either

role (attribute) names or are formed using the operators in Table ?? (??).

Individuals are either individual names or concrete individuals. Concrete

individuals are either numbers or strings. Individual names are either distinct

individual names or anonymous individual names.

Statements are formed according to Tables ?? and ??.

A knowledge base is a sequence of statements in which there is exactly

one definition of every occurring concept, role, attribute, individual, and

rule name. Concept, role, attribute, and individual names must be defined

before their first use, so no cyclic definitions are allowed. The name spaces

of concepts, roles, individuals, and rules are distinct (i.e., there may be a

concept and a role with the same name). The name space of attributes is a

sub-space of the name space of roles.

Comment lines, starting with a ';', are allowed in knowledge bases.

1These tables include the abstract form syntax from [?], so that the logic here can be
compared with the many published papers using this abstract form.

2



Input

TOP

BOTTOM

NUMBER
INTEGER

STRING

(and C1 -.. Cn)

(or C 1 ... Cn)

(not C)

(a, R C)
(some R)

(none R)

(at-least n R)

(at-most n R)

(exactly n R)

(some R C)

(at-least n R C)

(at-most n R C)

(exactly n R C)

(equal RI R2)

(not-equal R I R2)

(subset R1 R2)

(fillers R 11 ... In)

(only-fillers R 11 ... In)

(in A C)

(is A I)

(set 11 ... In)

(minimum Cl)

(maximum CI)

(satisfies...)

Syntax
Abstract

T

_L

C 1 I-1 ..- n Cn

C 1 U .-. U Cn

-_C
VR:C

3R

TR
>nR

<nR

=nR

3R.C

__nR:C
<n R:C

=n R:C

R1 = R2 I-I 3R 1

R1 # R2

R1 C_R2

R:I1 l-1 ... r-i R: In

A:C

A:I

{ll,...,l°}

Extension

0
the numbers

the integers

the strings

C1 z O ... [-/Cn z

C11 U ... U Cnz

Az \ Cz
{dEAF

{dE _F
{deAF
{deA_

{deaf
{de _x_

{dEA_

{dEAF

{dEAF

{dEAF

{dEAF

{dEA z

{de,_

RI(d) _ Cz}

RZ(d) -¢ O}

RZ(d) = 0}

IRZ(d)l _>n}
IRZ(d)l_ n}
IRZ(d)l=n}
RZ(d) n Cz # 0}

IR:r(d)n CZl> n}
IRZ(d) n CZl_<n)
IRZ(d)n CZl= _}
RlZ(d) = R2Z(d) A RlZ(d) -¢ 0}

RlZ(d) ¢ R2Z(d)}

RlZ(d) C_ R2Z(d)}

RZ(d) 2 {llZ,.-.,InZ}}

RZ(d) = {llZ,...,InZ}}

AZ(d) E Cz}

AZ(d) = Iz }

{llZ,...,In z}

{de Zx_z 1 d > cF}
{de Zx_:1d < cIz}
see text

Table 1: Concept Syntax and Semantics



Syntax

Input Abstract
T

top .L
bottom
identity id

(and R1 -.. Rn) RIFI""I"3Rn

(or RI ... Rn) RILJ'"LIRn
_R

(not R) R_ I
(inverse R)
(restrict R C) R IC
(compose R1 ..- Rn) R1o...oRn

(range C)

(domain C)
(domain-range Cl C2) C1xC2

(transitive-closu re R) R+

(transitive-reflexive-closure R) R*

(satisfies...)

Extension

A_ × AI
0
{(d,a) I de_}
R1/ N." n Rnz

R1 z U .'" U Rn z

(_ × _) \R_
(R_)-' n (At × _)
Rzn (A_× C_)
RII o ...o RnI

A_ x CI
(Un A_)x AZ
(Cl _n _) × C2_

see text

Table 2: Role Syntax and Semantics

Syntax

Input

bottom

identity

(and AI R2 .-. Rn)

(restrict A C)
(composeA1 ... An)

Extension

Abstract

± 0
id {(d,d) l d e /x_}

AIoR20"'F1Rn A11MR2 l"n'''nRn I

A IC Azn (Atx Cz)
A1o ...oAn AIz o.." o An I

Table 3: Attribute Syntax and Semantics



Syntax
Input
(define-concept CN C)

(define-primitive-concept CN C)

(define-disjoint-primitive-concept

CN (GN 1 ... GNn) C)

(define-role RN R)

(define-primitive-role RN R)

(define-attribute AN A)

(define-primitive-attribute AN R)

(define-distinct-individual DIN)

(define-anonymous-individual AIN)

(define-rule XN CN C)

(state S)

(close-role IN R)

(close-role-fillers IN R)

Abstract

CN-'C

CNEC

RN='R

RNCR

AN --" A

ANCR

Semantics

CN I = C I

CN _ c Cz

see text

RNZ= Rz

RN 2"C RI"

AN I = Az

AN I C Rz

see text

see text

see text

Sr

see text

see text

Table 4: Statement Syntax and Semantics

Syntax

Input Abstract

(and S1 ... Sn)

(orSl ... Sn)

(not S)

(instance IN C)

(related IN IR)

(equal IN 1 IN2)

IN6C

(IN, I) 6 R

Semantics

511 A -'- ASn I

511 V -.. V Sn z

-_Sz

IN I" 6 Cz

(IN z, IZ> 6 RI

IN1 _ = IN21

Table 5: Assertion Syntax and Semantics
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3 Semantics

The semantics of the description logic is defined in terms of interpretations

and model-sets. The interpretation part of the semantics is mostly taken

from [?]. The idea of (epistemic) model-sets is taken from [?].

Semantics are defined directly only for simple knowledge bases. A simple

knowledge base is a knowledge base without any role or role fillers closure

statements or disjoint primitive definitions. Simple knowledge bases can also

contain disjointness statements of the form (disjoint CN 1 CN2) where the

concept names have been primitively defined.

A non-simple knowledge base is transformed into a simple knowledge base

by modifying, in order, each role or role filler closure or disjoint primitive

definition as follows:

.

.

.

A role closure, (close-role IN R), is replaced by (instance IN (at-most n R)),

where n is the largest integer such that (instance ]N (at-least n R)) fol-

lows from the simplified version of the portion of the knowledge base

before the role closure, provided that there is such an n. Otherwise the

role closure is ignored.

A role fillers closure, (close-role-fillers IN R), is replaced by

(instance IN (only-fillers R I1 ... In)), where the Ii are the individuals

such that (instance IN (fillers R ti) ) follows from the simplified version

of the portion of the knowledge base before the role fillers closure.

A disjoint primitive definition,

(define-disjoint-primitive-concept CN (GNI ... GNn) C), is changed to

(define-primitive-concept CN C), (disjoint CN CNI), ..., (disjoint CN CNm),

where the CN i are the disjoint primitive concepts in the portion of the

knowledge base before this definition that have any of the GNj in their
definition.

An interpretation, 2", consists of a domain, A z, and a mapping, .z, from

concept names, role names, attribute names, and individual names to their

extensions in the interpretation. The interpretation function is extended to

all concepts, roles, attributes, individuals, and assertions as defined below.

6



All domains contain the rationals and strings over some alphabet of size

at least 2, this is called the concrete part of the domain, A_z. The rest of the

domain, A_z, is called the abstract part of the domain.

The extension of concepts are subsets of A z. The extension of roles

are set-valued functions from A z to A z. The extensions of attributes are

single-valued, partial functions from A z to A z. (The extension of roles and

attributes will sometimes also be treated as the equivalent subset of A_z x

A z. The extension of attributes are also sometimes treated as set-valued

functions.) The extensions of individual names are elements of the abstract

part of the domain. The extension of a distinct individual name is different
from the extension of all other distinct individual names. The extension of

a number or a string is the appropriate rational or string. The extension of

assertions is either true or false.

The extension of the concept-, role-, and attribute-forming operators is

as in the DFKI proposal [?], extended in the obvious way. See Tables ??, ??,
and ?? for details. The extension of the satisfies constructs is unconstrained

(within A z or A_z x A z, of course).

A non-empty set of interpretations is a model-set for a simple knowledge

base if each statement in the simple knowledge base is is true in the set. A

simple knowledge base (any knowledge base) is inconsistent if it (its simple

version) has no model-sets.

A non-rule, non-closure statement is true in a non-empty set of inter-

pretations if it is true in each interpretation in the set. Conditions for the

truth of several types of statements are given in Table ??. The statement

(disjoint CN1 CN2) is true in an interpretation if the extensions of CN1 and

CN2 are disjoint. Definitions of individuals only serve to distinguish anony-

mous and distinct individual names.

A non-empty set of interpretations makes (define-rule N C1 C2) true for a

simple knowledge base if for each individual name, IN, in the simple knowl-

edge base, if IN z E C1 z in each interpretation, 2", in the set, then IN z E C2 z

in each interpretation in the set.

A subsumption relationship, C1 ==* C2 (R1 ==_ R2), follows from a

knowledge base if C1 z _ C2 z (R1 z C_ R2 z) in each interpretation of each

model-set of the simple knowledge base version of the concept, role, attribute,

disjointness, and individual definitions (i.e., no rules or assertions or closures)

in the original knowledge base. An instance relationship, IN C C, follows



from a knowledge base if INz E CZ; a role relationship, (IN, I) E R, follows if

(IN z, Iz) E RZ; and an individual equality, IN1 = IN2, follows if IN1 z = IN2Z;

all in each interpretation of each model-set of the simple knowledge base

version of the original knowledge base.

4 Queries, Retrievals, and Validations

The input language of the specification also contains inquiries about the

knowledge base that is being constructed. The input language is thus a

sequence of statements, queries (see Table ??), retrievals (see Table ??), and

validations (see Table ??).

A query follows from a knowledge base, and returns something other than

the symbol NIL, if its meaning in Table ?? follows from the knowledge base

before the query. Otherwise, the query is false, and returns the symbol NIL.

However, if a concept or role in a subsumption query is incoherent: then the

result of the query is unspecified. Note that determining if a query follows

from a knowledge base is not decidable, nor even recursively enumerable.

Therefore, no implementation can possibly be complete.

Retrievals return sets (as lists) of concept names, role names, individual

names, and concrete individuals.

The retrieval (concept-descendants C) ((concept-ancestors C)) returns the

set of concept names, CN, that are defined in the KB, and for which CN ==_ C

(C ==_ CN) follows from the KB but C _ CN (CN ==v C) does not. The

retrieval (concept-offspring C) ((concept-parents C)) returns the set of maxi-

mal (minimal), under the subsumption relationship in the KB, elements of

the result of (concept-descendants C) ((concept-ancestors C)). The retrieval

(concept-instances C) returns the set of individual names, IN, that are de-

fined in the KB, and for which IN E C follows from the KB. The retrieval

(concept-direct-instances C) returns the subset of the result of (concept-instances C)
that are not instances of any member of the result of (concept-descendants C).

Role retrievals are defined analogously.

The retrieval (individual-types IN) returns the set of concept names, CN,
that are defined in the KB and for which IN E CN follows from the KB. The

retrieval (individual-direct-types IN) returns the set of minimal, under the sub-

sumption relationship in the KB, elements of the result of (individual-types IN).

2An incoherent concept or role has empty extension in all model sets.



Query

(concept-subsumes? C1 C2)

(role-subsumes? R 1 R2)

(individual-instance? IN C)

(individual-related? IN I R)

(individual-equal? INz IN2)

(individual-not-equal? IN 1 IN2)

Meaning

C1 ==_ C2
R1 _ R2
INEC

(IN, I) E R

INI = IN2

-_(IN 1 =IN2)

Table 6: Query Syntax and Semantics

(concept-descendants C)

(concept-offspring C)

(concept-ancestors C)

(concept-parents C)

(concept-instances C)

(concept-direct-instances C)

(role-descendants R)

(role-offspring R)

(role-ancestors R)

(role-parents R)

(individual-types IN)

(individual-direct-types IN)

(individual-fillers IN R)

Table 7: Retrieval Syntax

(validate-true QQ)

(validate-not-true QQ)

(validate-set RR N1 ... Nn)

Table 8: Validation Syntax

9



The retrieval (individual-fillers IN R) returns the set of individual names, IN1,

that are defined in the KB and for which (IN, IN1) E R follows from the KB,

unioned with the set of concrete individuals, Ic, for which (IN, Ic) E R follows

from the KB, unless this latter set is infinite, in which case the retrieval is

undefined.

Validations simply check to see if the query or retrieval returned the

expected result. If so, the validation is true; otherwise, the validation is

false, and may print a message.

5 Compliance

Conforming implementations must parse the entire syntax. If a conforming

implementation cannot internally represent a particular statement, it must

replace it some syntactically-close representable statement and issue a warn-

ing.

For simple knowledge bases, conforming implementations must be sound

for queries. Retrievals must be correct with respect to a definition that

replaces semantic entailment by the (incomplete) subsumption query in the

conforming implementation.

Core knowledge bases are defined as knowledge bases containing only the

following sorts of statements:

(define-concept CN cC)

(define-primitive-concept CN cC)

(define-disJoint-primitive-concept CN (GN I

(define-primitive-attribute AN top)

(define-distinct-individual DIN)

(define-rule XN CN cC)

(state (instance IN cC))

(state (related IN I cR))

... GNn) cC)

Here cC is a core concept, which is either a concept name, TOP, BOTTOM,

NUMBER, iNTEGER, or STRING or formed as follows:

(and cC1 ... cCn)

(all cR cC)

(some cR)

10



(none cR)

(eq (compose ANti

(minimum CI)

(maximum Cl)

• .. ANIn) (compose AN21 ... AN2m))

Also, cR is either a role name or an attribute name. (In the core cR has to be

an attribute, but the number restriction extension allows multi-valued roles

also.)

The core syntax was selected to be easy to perform inferences on. Sub-

sumption inferences are polynomial. Other inferences are similarly easy. The

inference for rules is that in the presence of the rule (define-rule XN CN C),

if (instance IN CN) can be derived, then (instance IN C) can also.

Conforming implementations must accept all consistent core knowledge

bases that also have no incoherent concept definitions. The actions of con-

forming implementations on inconsistent knowledge bases or knowledge bases

with incoherent concept definitions are unspecified. It is recommended that

an error be signaled or the knowledge base be reverted to a consistent state

(or both) as soon as an inconsistency is detected. If an incoherent concept

(or role) definition is detected, an error may be signalled and the knowledge

base be reverted, or a warning produced.

Conforming implementations must perform complete reasoning on core

knowledge bases. Note that because subsumption is unspecified for incoher-

ent concepts or roles conformining implementations do not have to perform

complete subsumption on such concepts or roles.

5.1 Extensions

If an implementation is complete with respect to subsumption of incoherent

concepts then it satisfies the "incoherent-subsumption" extension.

If an implementation is complete on the core plus the statements:

(define-primitive-role RN top)

(close-role IN cR)

(close-role-fillers IN cR)

with concepts extended to include (at-least n RN), (at-most n RN), and

(exactly n RN) then it satisfies the "number-restriction" extension.

11
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A Test Suite

This is a simple test suite for compliance with the specification.

;; The following macro calls test the parsing.

(define-concept cl top)

(define-concept ccl)

(define-role relative top)

(define-primitive-role sibling (and top relative))

(define-primitive-role brother (or (and sibling)))

(define-primitive-role sister (and (or sibling)))

(define-attribute age top)

(define-primitive-attribute name (or relative))

;; defaults to sister as parent:

(define-primitive-role sister2 (and sister brother))

;; Defaults to simple role:

(define-primitive-role relative3 (or sister brother))

(define-primitive-role

(define-primitive-role

(define-primitive-role

(define-prlmitive-role

(define-primitive-attribute

(define-primitive-attribute

(define-primitive-attribute

rl top)

r2 top)

r3 top)

r top)

at top)

a2 top)

a top)

12



(define-disjoint-primitive-concept animal type top)

(define-disjoint-primitive-concept animal3 type top)

(define-primitive-concept animal2 top)

(define-concept c2a bottom)

(define-concept c2 (all (and relative) cl))

(define-concept c3 (all age (or number)))

(define-concept c4 (all age (and integer)))

(define-concept c5 (all name string))

(define-concept c6 c5)

(define-concept c7 (and (or cl c2)))

(define-concept c8 (or cl))

(define-concept c9 (or cl c2))

(define-concept clO (or (and (some rl) (some r2))))

(define-concept cll (not top))

(define-concept c12 (not cl))

(define-concept c13 (all r top))

(define-concept c14 (all (not r) top))

(define-concept c15 (some rl))

(define-concept c16 (some (not rl)))

(define-concept c17 (some r top))

(define-concept c18 (some (not r) top))

(define-concept c19 (at-least 2 rl))

(define-concept c20 (at-least 2 (not rl)))

(define-concept c21 (at-least 2 rl CI))

(define-concept c22 (at-least 2 (not rl) Cl))

(define-concept c23 (at-most 2 rl))

(define-concept c24 (at-most 2 (not rl)))

(define-concept c25 (at-most 2 rl Cl))

(define-concept c26 (at-most 2 (not rl) CI))

(define-concept c27 (exactly 2 rl))

(define-concept c28 (exactly 2 (not rl)))

(define-concept c29 (exactly 2 rl C1))

(define-concept c30 (exactly 2 (not rl) Cl))

(define-concept c31 (defined r))

(define-concept c32 (defined (not r)))

13



(define-concept c33 (undefined r))

(define-concept c34 (undefined (not r)))

(define-concept c35 (equal (compose al) (compose a2 al)))

(define-concept c36 (equal (compose al) (compose a2 r3)))

(define-concept c37 (equal al a2))

(define-concept c38 (equal (range C) a2))

(define-concept c39 (not-equal al a2))

(define-concept c40 (subset al a2))

(define-concept c41 (fills r il i2))

(define-concept c42 (fills r 5 6))

(define-concept c43 (fills (and (or r)) 5 6))

(define-concept c44 (fills (range C) il i2))

(define-concept c45 (fills-only r il i2))

(define-concept c46 (fills-only r 5 6))

(define-concept c47 (fills-only (range C) il i2))

(define-concept c48 (in al Cl))

(define-concept c49 (in (and A) C))

(define-concept c50 (in (not A) C))

(define-concept c51 (in A (some r)))

(define-concept c52 (is A I))

(define-concept c53 (is (and A) I))

(define-concept c54 (is (not A) I))

(define-concept c55 (set il i2 i3))

(define-concept c55a (set 4 5))

(define-concept c56 (minimum 5))

(define-concept c57 (maximum 5))

(define-concept c58 (satisfies integerp))

(define-distinct-individual mary)

(define-anonymous-individual unnamed-ind)

(define-rule rule1 top (at-least 1 rl))

(close-role-fillers mary (and r2))

(close-role-fillers mary r)

(close-role-fillers mary (or r2 r))

(define-distinct-individual fred)

14



(close-role fred r2)

(define-primitive-concept athlete top)

(state (instance mary athlete))

(state (not (instance mary athlete)))

(state (equal mary joe))

(state (or (instance mary athlete)))

(state (or (instance mary athlete) (equal mary joe)))

(define-distinct-individual joe)

(state (related mary joe brother))

(state (related mary 35 age))

(state (and (instance mary athlete)))

(state (and (instance mary athlete) (related mary 35 age)))

(state (and (instance mary athlete) (equal mary joe)))

;; role syntax

(define-concept c59 (all top top))

(define-concept c60 (all bottom top))

(define-concept c61 (all identity top))

(define-concept c62 (all (inverse parent) top))

(define-concept c63 (all (restrict r c) top))

(define-concept c64 (all (compose rl r2) top))

(define-concept c65 (all (range cl) top))

(define-concept c68 (all (domain cl) top))

(define-concept c67 (all (domain-range cl c2) top))

(define-concept c68 (all (transitive-closure rl) top))

(define-concept c69 (all (transitive-reflexive-closure rl) top))

(define-concept c70 (all (satisfies foo rl) top))

;; Test the queries

(define-primitive-role rl top)

(define-prlmltive-role r2 top)

(define-primitive-role r2-child r2)

(define-primitive-role r2-child2 r2)

(define-primitive-role r2-descendant r2-child)

(define-prlmitive-role sibling top)

(define-primitive-attribute age top)

(define-primltive-concept athlete top)

15



(define-primitive-concept healthy top)

(define-concept healthy-athlete (and athlete healthy))

(define-primitive-concept very-healthy-athlete healthy-athlete)

(define-distinct-individual mary)

(state (and (related mary 35 age)

(related mary herbie sibling)

(related mary joe sibling)

(related mary martin sibling)))

(define-distinct-individual joe)

(state (and (instance joe athlete)

(related mary joe rl)))

(close-role-fillers mary rl)

(define-distinct-individual joe-healthy)

(state (and (instance joe-healthy healthy-athlete)))

(concept-subsumes? athlete healthy-athlete)

(concept-subsumes? healthy-athlete athlete)

(concept-subsumes?

(and (at-least 1 r2) (all rl athlete))

(and (at-least 2 r2-child) (all rl healthy-athlete)))

;; one containing an error:

(concept-subsumes?

(and (at-least i top) (all rl athlete))

(and (at-least 2 r2-child) (all rl healthy-athlete)))

(role-subsumes? rl r2-child) ;nil

(role-subsumes? r2 r2-child)

(role-subsumes? r2 r2)

(role-subsumes? top r2)

(individual-instance? mary (all rl athlete))

(individual-instance? joe athlete)

(individual-instance? joe (all rl athlete)) ;nil

(individual-instance? joel athlete) ;error

(individual-related? mary joe rl)
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(individual-related? mary joe r2)

(individual-related? mary joel r2)

(individual-equal? mary mary)

(individual-equal? mary joe)

(individual-equal? mary mary2)

(individual-equal? mary mary5)

(individual-not-equal? mary mary)

(individual-not-equal? mary joe)

(individual-not-equal? mary mary2)

(individual-not-equal? mary mary5)

;; Retrieval and Validation Macros

(concept-descendants athlete)

(concept-descendants bottom)

(concept-descendants (and athlete healthy))

(concept-descendants (defined rl))

(concept-offspring athlete)

(concept-offspring bottom)

(concept-offspring (and athlete healthy))

(concept-offspring (defined rl))

(concept-ancestors athlete)

(concept-ancestors bottom)

(concept-ancestors (and athlete healthy))

(concept-ancestors (defined rl))

(concept-parents athlete)

(concept-parents bottom)

(concept-parents (and athlete healthy))

(concept-parents (defined rl))

(concept-instances athlete)

(concept-instances bottom)
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(concept-instances healthy-athlete)

(concept-instances (and athlete healthy))

(concept-instances (defined rl))

(concept-direct-instances athlete)

(concept-direct-instances bottom)

(concept-direct-instances healthy-athlete)

(concept-direct-instances (and athlete healthy))

(concept-direct-instances (defined rl))

(role-descendants r2)

(role-descendants r2-child)

(role-descendants r2-descendant)

(role-descendants (and r2-descendant rl))

(role-offspring r2)

(role-offspring r2-child)

(role-offspring r2-descendant)

(role-offspring (and r2-descendant rl))

(role-ancestors r2)

(role-ancestors r2-child)

(role-ancestors r2-descendant)

(role-ancestors (and r2-descendant rl))

(role-parents r2)

(role-parents r2-child)

(role-parents r2-descendant)

(role-parents (and r2-descendant rl))

(individual-types joe)

(individual-types joe-healthy)

(individual-types mary)

(individual-types joel)

(individual-direct-types joe)

(individual-direct-types joe-healthy)
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(individual-direct-types mary)

(individual-direct-types joel)

(individual-fillers mary rl)

(individual-fillers mary age)

(individual-fillers mary r2)

(individual-fillers joel r2)

(individual-fillers mary r21)

(individual-fillers mary (not r21))

(validate-true (role-subsumes? rl r2-child)) ;nil

(validate-true (role-subsumes? r2 r2-child))

(validate-not-true (role-subsumes? rl r2-child)) ;nil

(validate-not-true (role-subsumes? r2 r2-child))

(validate-set (individual-fillers mary sibling) joe martin herbie)

(validate-set (individual-fillers mary sibling) martin herbie)
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Preface

The External Interfaces Working Group is a collection of artificial intelligence and distributed

systems researchers interested in software systems of communicating agents.

The group was formed in 1990 as a part of the DARPA Knowledge Sharing Effort, with the charter

to develop protocols for the exchange of represented knowledge among autonomous information

systems. The principal result of this effort is KQML, the Knowledge Query and Manipulation

Language. Other working groups include the Knowledge Interchange Format (KIF) working group,

the Ontologies working group, and the Knowledge Representations Systems Standards (KRSS)

working group.

The Knowledge Sharing Effort has received some direct funding from DARPA, the NSF and AFOSR

for organization and coordination. In addition, many of the members of the External Interfaces

Working Group are funded through research contracts from these and other agencies.

The development of KQML has been influenced, in particular, by two prototypical agent-based

systems. The first is part of the DARPA/Rome Planning Initiative, and involves wide-area com-

munication among planning, scheduling, resource control, and temporal reasoning programs [ref-

erence?]. These programs were written in combinations of LISP, Prolog, and C++, they run on a

variety of workstation platforms, and communicate over TCP/IP connections.

The second is the Palo Alto Collaborative Testbed (PACT), which demonstrated collaborative

distributed design, validation, and prototyping of an electromechanical device. PACT involves

metropolitan-area communication among software, circuit, power, sensor, and mechanical CAD

systems [PACT-ref]. These systems were written in combinations of LISP and C/C++, they

run on a variety of workstation and personal computer platforms, and communicate using either

TCP/IP or SMTP (electronic mail) connections (of. Appendix ??).
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1 Introduction

Modern computing systems often involve multiple intergenerating computations/nodes. Distinct,

and often autonomous nodes can be viewed as agents performing within the overall system, in

response to messages from other nodes. There are several levels at which agent-based systems must

agree, at least in their interfaces, in order to successfully interoperate:

Transport: how agents send and receive messages;

Language: what the individual messages mean;

Policy: how agents structure conversations;

Architecture: how to connect systems in accordance with constituent protocols.

This document is mostly about the language level. This document specifies the syntactic and

semantic fundamentals of the Knowledge Query and Manipulation Language (KQML).

KQML is complementary to work on representation languages for domain content, including the

DARPA Knowledge Sharing Initiative's Knowledge Interchange Format (KIF). KQML has also

been used to transmit object-oriented data, and a wide range of information can be accumulated.

KQML is a language for programs to use to communicate attitudes about information, such as

querying, stating, believing, requiring, achieving, subscribing, and offering. KQML is indifferent to

the format of the information itself, thus KQML expressions will often contain subexpressions in

other so-called "content languages."

KQML is most useful for communication among agent-based programs, in the sense that the pro-

grams are autonomous and asynchronous. Autonomy entails that agents may have different and

even conflicting agendas; thus the meaning of a KQML message is defined in terms of constraints

on the message sender rather than the message receiver. This allows the message receiver to choose

a course of action that is compatible with other aspects of its function. Of course, most useful agent

architectures strive for maximal cooperation among agents, but just as with human organizations,

complete cooperation is not always possible.

KQML is complementary to new approaches to distributed computing, which focus on the transport

level. For example, the new and popular Object Request Broker [OMG ORB] specification defines

distributed services for interprocess and interplatform messaging, data type translation, and name

registration. It does not specify a rich set of message types and their meanings, as does KQML.

A KQML message is called a performative, in that the message is intended to perform some action

by virtue of being sent. (The term is from speech act theory.) This document defines a substantial

number of performatives in terms of what they connote about the sender's knowledge.

However, we recognize that the performatives defined herein are neither necessary nor sufficient

for all agent-based applications. Therefore, agents need not support the entire set of defined

performatives (indeed, we expect that agents will usually support a small subset), and agents may

use performatives that do not appear in this specification. New performatives should be defined

precisely, and in the style of this specification.

The performative names in this specification are reserved; an application is not KQML-compliant

if it uses these performatives in ways that are inconsistent with the definitions in this specification.

We encourage implementors to use these reserved performatives when possible, to increase overall

interoperability.
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The primary dimension of KQML extension is through the definition of new performatives. The

definitions of new performatives must explicitly describe all permissible parameters, and when

applicable, default values for parameters that do not appear in particular messages. A performative

definition may coin new parameter names; however, we encourage the use of the parameter names

in this specification when they apply.

Besides KQML, at the language level of interoperation, this document touches on issues at the other

three levels. Appendix A describes work-in-progress on KQML APIs that provide a definition of and

code for the transport level, Appendix B defines some useful terms for describing messaging policies

(e.g., timely responses, pertinent communications), and Appendix C describes the architectures of

some existing agent-based systems. Our intent is for these terms and examples to make other agent-

based systems easier to characterize and compare for the task of achieving high-level interoperation.

This specification is written in the style of an Internet RFC. That is, the main thread of this

document is a dry description of what KQML is; comments regarding motivation for particular

aspects are relegated to inset NOTEs. Also, the latter portion of this document describes several

example systems that use (or in one case, could use) KQML messages.
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1.1 KQML Transport Assumptions

It is not the intent of this document to standardize a programming interface, much less a sys-

tem infrastructure, for message transport. Such issues are usually dominated by implementation

considerations, including programming language choice, network services and security.

Nevertheless, this document does intend to make prescriptions regarding an agent communication

language, and this requires a model of message transport. So for these purposes, we define the

following abstraction of the transport level:

• Agents are connected by unidirectional communication links that carry discrete messages;

• these links may have a non-zero message transport delay associated with them;

• when an agent receives a message, it knows from which incoming link the message arrived;

• when an agent sends a message it may direct to which outgoing link the message goes;

• messages to a single destination arrive in the order they were sent;

• message delivery is reliable.

NOTE: The latter property is less useful than it may appear, unless there is a guarantee of

agent reliability as well. Such a guarantee is a policy issue, and may vary among systems.

This abstraction may be implemented in many ways. For example, the links could be TCP/IP

connections over the Internet, which may only actually exist during the transmission of a single

message or groups of messages. The links could be email paths used by mail-enabled programs

[ServiceMail]. The links could be UNIX IPC connections among processes running on an ether-

networked LAN. Or, the links could be high-speed switches in a multiprocessor machine like the

Hypercube, accessed via Object Request Broker software [OMG ORB]. Regardless of how com-

munication is actually carried out, KQML assumes that at the level of agents, the communication

appears to be point-to-point message passing.

Conversely, higher levels can implement a variety of different communication abstractions. For

example, a star architecture (cf. Section ??) where the hub handles broadcast (cf. Section ??)

messages provides a virtual broadcast communication abstraction. A hierarchical architecture may

provide a virtual content-based multicast abstraction (cf. Section ??). The use of the pipe message

produces a virtual connection-oriented approach to message transport.

The point of this point-to-point message transport abstraction is to provide a simple, uniform

model of communication for the outer layers of agent-based programs. This should make agent-

based programs and APIs easier to design and build.
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2 KQML String Syntax

A KQML message is also called a performative. A performative is expressed as an ASCII string

using the syntax defined by this section. This syntax is a restriction on the ASCII representation

of Common Lisp Polish-prefix notation.

NOTE: We chose the ASCII-string LISP list notation because it is readable by humans, simple
for programs to parse (particularly for many knowledge-based programs), and transportable by

many inter-application messaging platforms. However, no choice of message syntax will be both

convenient and efficient for all messaging APIs; Appendix ?? describes some alternate syntaxes

for particular applications.

Unlike Lisp function invocations, parameters in performatives are indexed by keywords and there-

fore order independent. These keywords, called parameter names, must begin with a colon (:) and

must precede the corresponding parameter value.

NOTE: Performative parameters are identified by keywords rather than by their position due

to a large number of optional parameters to performatives.

Several examples of the syntax appear in Section 5 of this document.

2.1 KQML string syntax in BNF

The BNF given in Figure ?? assumes definitions for <ascii>, <alphabetic>, <numeric>, <double-quote>,

<backslash>, and <whitespace>. "*" means any number of occurrences, and "-" indicates set dif-

ference. Note that <performative> is a specialization of <expression>.

NOTE: In length-delimited strings, e.g. "#3"abc", the whole number before the double-quote

specifies the length of the string after the double-quote.
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<performative> ::= (<word> {<whitespace> :<word> <whitespace> <expression>}*)

<expression> ::= <word> I <quotation> I <string> I

(<word> {<.hitespace> <expression>}*)

<word> ::= <character><character>*

<character> ::= <alphabetic> I <numeric> I <special>

<special> ::= < I > i = I + I - I * I / I _ I I I _ I

®I$1XI : I I _ I?

<quotation> ::= '<expression> I '<comma-expression>

<comma-expression> ::= <word> ] <quotation> I <string> I ,<comma-expression>

(<.ord> {<whitespace> <comma-expression>}*)

<string> ::= "<stringchar>*" ] #<digit><digit>*"<ascii>*

<stringchar> ::= \<ascii> I <ascii>-\-<double-quote>

3

Figure 1: KQML string syntax in BNF

KQML Semantics

The semantic model underlying KQML is a simple, uniform context for agents to view each others'

capabilities. Each agent appears, on the outside, as if it manages a knowledge base (KB). That

is, communication with the agent is with regard to this KB base, e.g., questions about what a KB

contains, statements about what a KB contains, requests to add or delete statements from the KB,

or requests to use knowledge in the KB to route messages to appropriate other agents.

The implementation of an agent is not necessarily structured as a knowledge base. The implemen-

tation may use a simpler database system, or a program using a special datastructure, as long as

wrapper code translates that representation into a knowledge-based abstraction for the benefit of

other agents. Thus we say that each agent manages a virtual knowledge base (VKB).

When defining performatives, it is useful to classify the statements in a VKB into two categories:

beliefs and goals. An agent's beliefs encode information it has about itself and its external en-

vironment, including the VKBs of other agents. An agent's goals encode states of its external

environment that the agent will act to achieve. Performative definitions make reference to either

or both of an agent's goals and beliefs, e.g., that the agent wants another agent to send it a cer-

tain class of information. The English-prose performatives in this document make reference to

these terms, but this view of the VKB is especially important in the formal semantics of KQML

[SEMANTICS].

Agents talk about the contents of theirs and other's VKBs using KQML, but the encoding of

statements in VKBs can use a variety of representation languages. That is, the KQML performative

¢ol]. is used to specify that a particular string is contained in an agent's belief store, but the

encoding of that string can be a representation language other than KQML.

The only restrictions on such a representation is that it be sentential, so that expressions using

that representation can be viewed as entries in a VKB, and that sentences have an encoding as an
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[ Keyword Meaning

:content the information about which the performative expresses an attitude

:force whether the sender will ever deny the meaning of the performative

:in-reply-to the expected label in a reply

: language the name of represenation language of the : content parameter

:ontology the name of the ontology (e.g., set of term definitions) used in the :content

parameter

:receiver the actual receiver of the performative

:reply-with whether the sender expects a reply, and if so, a label for the reply

:sender the actual sender of the performative

Table 1: Summary of reserved parameter keywords and their meanings.

ascii string, so that sentences can be embedded in KQML messages. Fortunately, these restrictions

appear to hold for the representations of interest to KQML users, including AI languages, database

languages, object-oriented representations, and many CAD formats.

4 Reserved Performative Parameters

As described in Section 2, performatives take parameters identified by keywords. This section

defines the meaning of some common performative parameters, by coining their keywords and

describing the meaning of the accompanying values. This will facilitate brevity in the performative

definitions of Section 5, since the following parameters are used heavily.

The following parameters are reserved in the sense that any performative's use of parameters with

those keywords must be consistent with the definitions below. These keywords and information

parameter meanings are summarized in Table 1.

NOTE: The specification of reserved parameter keywords is useful in at least two ways: 1)
to mandate some degree of uniformity on the semantics of common parameters, and thereby

reduce programmer confusion, and 2) to support some level of understanding, by programs, of

performatives with unknown names but with known parameter keywords.

:sender <word>

:receiver <word>

These parameters convey the actual sender and receiver of a performative, as opposed to the virtual

sender and receiver in the :from and :to parameters of networking performatives (cf. Section 5.8).

:reply-with <expression>

:in-reply-to <expression>

If the <expression> is the word nil or this parameter is absent from the performative, then the

sender does not expect a reply. If the <expression> is the word t then the sender expects a reply.

Otherwise, the sender expects a reply containing a :in-reply-to parameter with a value identical

to <expression>.

:content <expression>

:language <word>

:ontology <word>
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The : content parameter indicates the "direct object" (in the linguistic sense) of the performative.

For example, if the performative name is tell then the :content will be sentence being told.

The <expression> in the :content parameter must be a valid expression in the representation

language specified by the :language parameter, or KQML if the :language parameter does not

appear. Furthermore, the constants used in the expression must be a subset of those defined by

the ontology named by the :ontology parameter, or the standard ontology for the representation

language if the :ontology parameter does not appear.

NOTE: Both :language and :ontology are restricted to only take <word>s as values, and
therefore complex terms, e.g., denoting unions of ontologies, are not allowed. We do believe

that it will be important to support a calculus of ontologies and languages, but we feel that its

proper place is in performatives that define new KQML names. This way, only those agents

that can process extensional performatives are expected to understand such a calculus.

:force <word>

If the value of this parameter is the word permanent, then the sender guarantees that it will never

deny the meaning of the performative. Any other value indicates that the sender may deny the

meaning in the future. (This parameter exists to help agents avoid unnecessary truth-maintenance

overhead.) The default value is tentative.
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Name Section Meaning

achieve 5.4 S wants R to do make something true of their environment

advertise 5.6 S is particulary-suited to processing a performative
ask-about 5.2 S wants all relevant sentences in R's VKB

ask-all 5.2 S wants all of R's answers to a question

ask-if 5.2 S wants to know if the sentence is in R's VKB

ask-one 5.2 S wants one of R's answers to a question

break 5.8 S wants R to break an established pipe

broadcast 5.8 S wants R to send a performative over all connections

broker-all 5.9 S wants R to collect all responses to a performative

broker-one 5.9 S wants R to get help in responding to a performative

deny 5.1 the embedded performative does not apply to S (anymore)

discard 5.5 S will not want R's remaining responses to a previously-mentioned

performative

evaluate 5.2 S wants R to simplify the sentence

forwaxd 5.8 S wants R to route a performative

generator 5.5 same as a standby of a stream-all

monitor 5.7 S wants updates to R's response to a stream-all

next 5.5 S wants R's next response to a previously-mentioned performative

pipe 5.8 S wants R to route all further performatives to a another agent

ready 5.5 S is ready to respond to R's previously-mentioned performative

recommend-all 5.9 S wants all names of agents who can respond to a performative

recommend-one 5.9 S wants the name of an agent who can respond to a performative

recruit-all 5.9 S wants R to get all suitable agents to respond to a performative

recruit-one 5.9 S wants R to get another agent to respond to a performative

register 5.8 S can deliver performatives to some named agent

reply 5.2 communicates an expected reply
rest 5.5 S wants R's remaining responses to a previously-mentioned performative

sorry 5.2 S cannot provide a more informative reply

standby 5.5 S wants R to be ready to respond to a performative

stream-about 5.3 multiple-response version of ask-about

stream-all 5.3 multiple-response version of ask-all

subscribe 5.7 S wants updates to R's response to a performative
tell 5.1 the sentence in S's VKB

unregister 5.8 a deny of a register
untell 5.1 the sentence is not in S's VKB

5

Table 2: Summary of reserved performatives, for sender S and recipient R.

Reserved Performative Names

In this section, we define several reserved performatives. That is, they are reserved in the sense

that if an implementation uses any of the following performative names in a way that is inconsistent

with the following performative definitions, then that implementation is not compliant with KQML.

The reserved performatives and their meanings are summarized in Table 2.

In this section, we describe performative semantics in English prose. Since English prose is often

ambiguous and sometimes self-contradictory, we have developed a framework for formal definition

of performatives. A full description appears in a separate paper [Genesereth et al.].

Definitions of new performatives should follow the style of the definitions in this section. That is,

a definition should convey the following:
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• the performative name;

• all parameters keywords that the performative may contain;

• syntactic categories and semantics for all values of parameters with non-reserved keywords;

• any additional syntactic and semantic constraints for values of parameters with reserved

keywords;

• the default values of all absent parameters;

• the semantics, in terms of a statement the sender is making of itself, of the performative name

applied to the parameters.

5.1 Basic informative performatives

tell

:content <expression>

:language <word>

:ontology <word>

:in-reply-to <expression>

:force <word>

:sender <word>

:receiver <word>

Performatives of this type indicate that the : content sentence is in the sender's virtual knowledge

base (VKB) (cf. Section 3).

deny

:content <per:formative>

:language KQML

:ontology <word>

:in-reply-to <expression>

:sender <word>

:receiver <word>

Performatives of this type indicate that the meaning of the embedded <per:formative> is not true

of the sender. A deny of a deny cancels out.

untell

:content <expression>

:language <word>

:ontology <word>

:in-reply-to <expression>

::force <word>

:sender <word>

:receiver <word>

A performative of this type is equivalent to a deny of a tell.
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NOTE: unteil weaker than telling the negation of the sentence; the sendermay not have the

negation in its VKB either.

NOTE: Inclusion ofuntell performative is obviously redundant; in this document, perspecuity

takes precedence over minimality.

5.2 Basic query performatives

evaluate

:content <expression>

:language <word>

:ontology <word>

:reply-with <expression>

:sender <word>

:receiver <word>

Performatives of this type indicate that the sender would like the recipient to simplify the expression

in the : content parameter, and reply with the result. (Simplification is a language specific concept,

but it should subsume "believed equal".)

reply

:content <expression>

:language <word>

:ontology <word>

:in-reply-to <expression>

:force <word>

:sender <word>

:receiver <word>

Performatives of this type indicate that the sender believes that :content is an appropriate reply

to the query in the :in-reply-to message.

ask-if

:content <expression>

:language <word>

:ontology <word>

:reply-with <expression>

:sender <word>

:receiver <word>

A performative of this type is the same as evaluate, except that the : content must be a sentence

schema in the :language. In other words, the sender wishes to know if the : content matches any

sentence in the recipient's VKB.

ask-about

:content <expression>
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:language <word>

:ontology <word>

:reply-with <expression>

:sender <word>

:receiver <word>

A performative of this type is like ask-if, except that the reply should be the collection of all

sentences in the recipient's VKB that contain a sentence or term that matches the sentence or

term schema in the :content. Note that the reply :language and :ontology must include a

"collection" construct (e.g., sets, lists, bags, etc.).

ask-one

:content <expression>

:aspect <expression>

:language <word>

:ontology <word>

:reply-with <expression>

:sender <word>

:receiver <word>

A performative of this type is like an ask-if, except that the :aspect parameter describes the

form of the desired reply; for some match of the :content in the recipient's VKB, the reply will

be the :aspect with all of its schema variables replaced by the values bound to the corresponding

schema variables in :content. The value of the :aspect parameter defaults to the value of the

:content parameter. Note that performatives of this type make most sense with languages that
define schema variables.

ask-all

:content <expression>

:aspect <expression>

:language <word>

:ontology <word>

:reply-with <expression>

:sender <word>

:receiver <word>

A performative of this type is like ask-one, except that the reply should be a collection of instan-

tiated aspects corresponding to all matches of the : content sentences on the recipient's VKB.

sorry

:in-reply-to <expression>

:sender <word>

:receiver <word>

A performative of this type indicates that the sender understands, but is not able to provide any

(more) response(s) to the message referenced by the :in-reply-to parameter. A performative

of this type may be used in response to an evaluate or ask-one query, when no other reply is

appropriate. It may also be used as the last response to a multi-response query performative (e.g.,

the performatives in the next section).
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Agent A sends the following performative to agent B:

(evaluate :language KIF :ontology motors :reply-with ql

:content (val (torque motorl) (sim-time S)))

and agent B replies with:

(reply :language KIF :ontology motors :in-reply-to ql

:content (scalar 12 kgf))

Figure 2: In this example of basic query performatives, agent A asks agent B a simple query and receives a

response via a tell.

5.3 Multi-response query performatives

stream-about

:content <expression>

:language <word>

:ontology <word>

:reply-with <expression>

:sender <word>

:receiver <word>

This type is like ask-about, except that rather than replying with the collection of matches, the

responder should send a series of performatives that when taken together identify the members of

that collection.

stream-all

:content <expression>

:aspect <expression>

:language <word>

:ontology <word>

:reply-with <expression>

:sender <word>

:receiver <word>

This type is like ask-all, except that rather than replying with the collection of instantiated

aspects, the responder should send a series of performatives that when taken together identify the

members of that collection.

5.4 Basic effector performatives

achieve

:content <expression>

:language <word>

:ontology <word>

:force <word>

:sender <word>

:receiver <word>
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Agent A sends the foHowing performative to agent B:

(stream-about :language KIF :ontology motors :reply-with ql

:content motorl)

and agent B replies with a series of performatives:

(tell :language KIF :ontology motors :in-reply-to ql

:content (= (val (torque motorl) (sim-time 5)) (scalar 12 kgf))

(tell :language KIF :ontology structures :in-reply-to ql

:content (fastens frame12 motorl))

(sorry :in-reply-to ql)

Figure 3: Agent A asks B to tell all it knows about motorl. B replys with a sequenct of tells terminated with a

sorry.

Performatives of this type are requests that the recipient try to make the sentence in :content

true of the system (technically, that the sender wants the recipient to want to make the sentence

true of the system).

unachieve

:content <expression>

:language <word>

:ontology <word>

:sender <word>

:receiver <word>

A performative of this type is the same as a deny of an achieve.

5.5 Generator performatives

The following performatives comprise a generator mechanism for the defivery of responses to a

KQML performative. That is, this mechanism allows an agent to explicitly retrieve responses in a

series; this is especially useful when there are a large number of responses, and/or the agent is not

able to efficiently buffer incoming responses.

standby

Agent A sends the following performative to agent B:

(achieve :language KIF :ontology motors :reply-with ql

:content (= (val (torque motor1) (sim-time 5))

(scalar 2 kgf))

and after achieving the requested motor torque, agent B might send the following (though

it is not expected):

(tell :language KIF :ontology motors

:content (= (val (torque motorl) (sim-time 5))

(scalar 2 kgf))

Figure 4: Agent A tells B to achieve a state in which the the torque of rnotorl is a particular value.
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:content <performative>

:language KQML

:ontology <word>

:reply-with <expression>

:sender <word>

:receiver <word>

This type indicates that the sender wants the recipient to take the would-be response(s) from the

performative in :content, and announce its readiness to accept requests for the responses.

ready

:reply-with <expression>

:in-reply-to <expression>

:sender <word>

:receiver <word>

This type indicates that the sender will answer requests for the responses to the performative

contained in some performative with the :in-reply-to label. The :reply-with parameter is, in

function, the returned generator.

next

:in-reply-to <expression>

:sender <word>

:receiver <word>

This type indicates that the sender wishes to receive the next response from those promised by the

performative identified by the :in-reply-to parameter.

NOTE: The next performative does not have a : reply-with parameter because the :in-reply-to

parameter of the next response should match the :reply-with parameter of the performative

embedded in the original standby message.

rest

:in-reply-to <expression>

:sender <word>

:receiver <word>

This type indicates that the sender wishes to receive the remaining responses, in a stream, from

those promised by the ready performative identified by the :in-reply-to parameter.

discard

:in-reply-to <expression>

:sender <word>

:receiver <word>

This type indicates that the sender will issue no more replies to the ready performative identified

by the : in-reply-to parameter. (This is a courtesy to the owner of the generator, so it can reclaim

resources needed to maintain the generator.)
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Agent A sends the following performative to agent B:

(standby :language KQML :ontology KIO :reply-with gl

:content (stream-about :language KIF

:ontology motors

:reply-with q3

:content motorl))

and agent B replies with:

(ready :reply-with 2FOB :in-reply-to gl)

then agent A foHows with:

(next :in-reply-to 2FOB)

to which B replies with:

(tell :language KIF :ontology motors :in-reply-to q3

:content (= (val (torque motorl) (sim-time 5))

(scalar 12 kgf))

and so on, until h sends:

(discard :in-reply-to 2FOB)

Figure 5: In this example, agent A asks B to prepare to generate a stream of all of the information it knows

about motor1. Agen B replys that it is ready and returns an identifier for A to use in requesting the individual

facts. Agent A asks for a number of facts and finally ]ndlcates that no more are required,

generator

:content <expression>

:aspect <expression>

:language <word>

:ontology <word>

:reply-with <expression>

:sender <word>

:receiver <word>

This type is the same as:

(standby

:content (stream-all :content <expression>

:aspect <expression>

:language <word>

:ontology <word>

:sender <word>

:receiver <word>)

:language KQML

:reply-with <expression>)

5.6 Capability-definition performatives

advertise
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:content <performative>

:language KQML

:ontology <word>

:force <word>

:sender <word>

:receiver <word>

This type indicates that the sender is particularly suited to process the class of KQML performatives

described by the :content parameter. If the embedded performative is missing any parameters

(defined for the embedded performative), then those parameters may take any otherwise legal

values.

5.7 Notification performatives

subscribe

:content <performative>

:ontology <word>

:language KQML

:reply-with <expression>

:force <word>

:sender <word>

:receiver <word>

This type indicates that the sender wishes the recipient to tell it about future changes to what

would be the response(s) to the KQML performative in the :content parameter.

monitor

:content <expression>

:ontology <word>

:language <word>

:reply-with <expression>

:force <word>

:sender <word>

:receiver <word>

This type is the same as:

(subscribe :content (stream-all :content <expression>

:reply-with <expression>

:language <word>

:ontology <word>

:sender <word>

:receiver <word>

:force <word>)
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Agent B sends the foUowing performative to agent A:

(advertis :language K_ML :ontology glO

:content (subscribe :language KQML

:ontology KIO

:content (stream-about :language KIF

:ontology motors

:content motorl)))

to which agent B responds with:

(subscribe :reply-with sl

:language KqML :ontology KIO

:content (stream-about :language KIF

:ontology motors

:content motor1))

then agent A foHows with this stream of performatives over time:

(tell :language KIF :ontology motors :in-reply-to sl

:content (= (val (torque motor1) (sim-time 5))

(scalar 12 kgf))

(tell :language KIF :ontology structures :in-reply-to sl

:content (fastens framel2 motorl))

(untell :language KIF :ontology motors :in-reply-to sl

:content (= (val (torque motorl) (sim-time 5))

(scalar 12 kgf))

(tell :language KIF :ontology motors :in-reply-to sl

:content (= (val (torque motor1) (sim-time S))

(scalar 13 kgf))

• ° •

Figure 6: In this example, agent A announces that it is willing to accept subsc6ptions from other agents who

would like to find out about motor1. Agent B tells A that it would indeed like to receive a stream of information

about motor1. A then supplies the stream.
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5.8 Networking performatives

register

:name <word>

:sender <word>

:receiver <word>

This type indicates that the sender can deliver performatives to the agent named by the :name

parameter (this subsumes the case when the sender calls itself by this name).

unregister

:name <word>

:sender <word>

:receiver <word>

This type is the same as a deny of a register.

forward

:to <word>

:from <word>

:content <performative>

:language KQML

:ontology <word>

:sender <word>

:receiver <word>

This type indicates that the sender wants the : to agent to process the performative in the : content

parameter as if it came from the : from agent directly. It is important that the : to agent receive the

package, not just the performative, or it will think that the performative is from the next-to-last

step in the path.

NOTE: This will normally entail that the response(s) are also wrapped in forward(s), since the

responder will want to deliver the response(s) to the requesting agent, and achieving this may

involve the use of package or other networking performatives. However, it is possible that agent
A must use a package to send a performative to B, but B can send a performative to A directly.

NOTE: Previous versions of KQML defined three levels of KQML syntax - the communication

(package) layer, the message layer, and the content layer. The current approach is a proper

generalization, since the layers arise from the embedding of performatives.

broadcast

:from <word>

:content <expression>

:ontology <word>

:language <word>

:sender <word>

:receiver <word>
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This type indicates that the sender would like the recipient to route the broadcast performative to

each of its outgoing connections, unless the recipient has already received a broadcast performative

with this :reply-with (for cycle detection).

pipe

:to <word>

:from <word>

:reply-with <expression>

:sender <word>

:receiver <word>

This type indicates that future traffic on this channel should be routed to the :to agent, as if

:to and :from were directly connected. Furthermore, the recipient is expected to pass the pipe

performative toward the :to agent. Like forward, it is important that the destination receive the

pipe performative, so that it knows that performatives from the next-to-last agent on the path

come from the :from agent.

break

:in-reply-to <expression>

:sender <word>

:receiver <word>

A performative of this type breaks a pipe. The :in-reply-to parameter value must match the

:reply-with value of a previous pipe performative. Not only is the recipient of a break expected

to cease piped routing, but it is also expected to pass the break up the pipe. This will have the

effect of dismantling the pipe in the opposite direction in which it was built.

5.9 Facilitation performatives

broker-one

:content <expression>

:ontology <word>

:language KQML

:reply-with <expression>

:sender <word>

:receiver <word>

This type indicates that the sender wants the recipient to process the embedded performative

through the help of a single agent that is particularly suited to processing the embedded performa-

tive. (Presumably, such suitability was established using :advertise performatives.)

broker-all

:content <expression>

:ontology <word>

:language KQML

:reply-with <expression>

:sender <word>

:receiver <word>
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This type is similar to broker-one except that the sender wants the recipient to enlist the help

of all agents particularly suited to processing the embedded performative. The recipient of the

broker-all replies with a list of all responses.

recommend-one

:content <expression>

:ontology <word>

:language KQML

:reply-with <expression>

:sender <word>

:receiver <word>

This type indicates that the sender wants the recipient to reply with the name of a single agent

that is particularly suited to processing the embedded performative.

recommend-all

:content <expression>

:language KQML

:ontology <word>

:reply-with <expression>

:sender <word>

:receiver <word>

This type indicates that the sender wants the recipient to reply with a list of names of agents that

are particularly suited to processing the embedded performative.

recruit-one

:from <word>

:content <expression>

:language KQML

:ontology <word>

:sender <word>

:receiver <word>

This type indicates that the sender wants the recipient to forward the embedded performative to a

single agent that is particularly suited to processing the embedded performative. This differs from

broker-one because the recruited agent will forward its response directly to the original sender.

recruit-all

:from <word>

:content <expression>

:ontology <word>

:language KQML

:sender <word>

:receiver <word>

This type is similar to recruit-one except that the sender wants the recipient to forward the

embedded performative to all agents particularly suited to processing the embedded performative.

The recruited agents individually forward their responses to the original sender.
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6 Proposed Performatives

This section documents some proposed performatives which are currently being discussed and/or

reviewed. As the group reaches a consensus on these proposed performatives, they will be included

in other section or deleted. They are included in this document to give the reader an accurate

picture of the evolving specification and to encourage discussion of these proposals.

6.1 Database performatives

These proposed performatives, INSERT, DELETE, etc. provide an ability for one agent to request

another agent to insert or delete sentences in its VKB.

insert

:content <expression>

:language <word>

:ontology <word>

:reply-with <expression>

:in-reply-to <expression>

:force <word>

:sender <word>

:receiver <word>

The sender requests the receiver to add the :content sentence to its VKB. The performative can

either fail or succeed. Possible errors and warning conditions are:

• Content duplicates sentence already in VKB.

• Content contradicts sentence already in VKB.

• Sender is not authorized to INSERT content.

• .°.

delete

:content <performative>

:language KQML

:ontology <word>

:reply-with <expression>

:in-reply-to <expression>

:sender <word>

:receiver <word>

The sender requests the receiver to delete the :content sentence from its VKB. The sentence must

be ground. The performative can either fail or succeed. Possible errors and warning conditions are:

• Content not ground.

• Content not in VKB.

• Content necessarily true in VKB.
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. Sender is not authorized to DELETE content.

• ..,

delete-one

:content <performative>

:aspect <expression>

:order { first I last I undefined }

:language KQML

:ontology <word>

:reply-with <expression>

:in-reply-to <expression>

:sender <word>

:receiver <word>

The sender requests the receiver to delete one sentence from its VKB which matches :content.

Note that performatives of this type make most sense with languages that define schema variables.

The :aspect parameter describes the form of the desired reply; for the match of the deleted

:content in the recipient's VKB, the reply will be the :aspect with all of its schema variables

replaced by the values bound to the corresponding schema variables in deleted sentence. The value

of the : aspect parameter defaults to the value of the : content parameter, if the : aspect is NIL,

then no response will be given for a successful deletion.

The optional :order parameter specifies whether the sentence to be deleted should be the first or

last one found in the VKB (this will only make sense to some agents (e.g. Prolog based ones)).

The default value for the :order parameter is undefined.

The performative can either fail or succeed. Possible errors and warning conditions are:

• No sentence matching content in VKB.

• Content necessarily true in VKB.

• Sender is not authorized to DELETE content.

delete-all

:content <performative>

:aspect <expression>

:language KQML

:ontology <word>

:reply-with <expression>

:in-reply-to <expression>

:sender <word>

:receiver <word>

This performative is like DELETE-0NE, except that the reply should be a collection of instantiated

aspects corresponding to all deleted sentences matching the :content.

The performative can either fail or succeed. Possible errors and warning conditions are:



REFERENCES 26

• No sentence matching content in VKB.

• All Content necessarily true in VKB.

• Sender is not authorized to DELETE content.

• °°.

6.2 Modifications to Sorry, Eos, Error

This proposal redefines SORRY, spliting off an EOS performative to indicate the end of a stream

of replys. It also suggests an ERROR performative by which one agent can indicate that another

agent's message was in some way mal-formed.

sorry :in-reply-to <expression>

:sender <word>

:receiver <word>

:comment <string>

A performative of this type indicates that the sender understands, but is not able to provide any

(more) response(s) to the message referenced by the :in-reply-to parameter. A performative

of this type may be used in response to an evaluate or ask-one query, when no other reply is

appropriate. The optional :COMMENT parameter can be used to pass a string which describes

the specifics of situation leading to refusal to provide a response or additional responses.

eos :in-reply-to <expression>

:sender <word>

:receiver <word>

The "End Of Stream" performative indicates that the sequence of responses to an earlier multi-

response message (e.g., stream-all) :IN-REPLY-TO has terminated successfully. No more responses

will be sent.

error :in-reply-to <expression>

:sender <word>

:receiver <word>

:comment <string>

:code <integer>

A performative of this type indicates that the sender can not understand or considers to be illegal

the message referenced by the :in-reply-to parameter. The :COMMENT parameter can be used

to return a string further describing how the sender considers the message to be ill formed.
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A Example Agent Policies

Agent-based software needs more than just a language for agents to describe their belief and wants.

Agents need motivation for performing these communicative acts in terms of expectations about

a helpful response. The shared expectations about message-passing behavior, e.g., helpfulness,

responsiveness, commitment, etc., comprise the agents' protocols.

There is no single collection of protocols necessary for agenthood. The protocols of a particular

system should be optimized for the constituent programs and the task at hand. In this specification,

we merely list several protocols that may be useful in many applications. Other protocols, say for

skepticism, bidding, reimbursement, and security, should be defined in this manner.

honesty a message's KQML semantics apply to the sender.

gullibility agents adopt the beliefs of others that are consistent with their own.

helpfulness agents adopt the goals of others that are consistent with their own

responsiveness agents will eventually respond to every received performative for which a response

is expected

NOTE: this protocol folds in two important constraints: that an agent will even-

tually process every performative, and that it will generate some sort of response

whenever responses are expected. The purpose of the latter constraint is to force a

response like "sorry" to performatives that just happen to not produce any other

responses. Of course, the meaning of this is totally wrapped-up in the word "ex-

pected"; the intent is that response(s) are expected from a performative like "ask",

but not "tell". "advertise" is trickier, but even though responses are possible, or

even commonplace, they are not "expected".

empathy agents have a built-in way of determining what performatives are needed by others (i.e.,

without needing an explicit performative to which to respond)

pertinence agents will not send performatives that they believe will not benefit others

identity agents will never register a networking name that is identical with the name of another

agent on the same network
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B

Figure 7: The ABSE federation architecture

Example Agent Architectures and Implementations

B.1 Content-based routing architecture (ala DRPI)

(to be completed by a representative of DRPI)

applications talk to router interface libraries, communicating content, however they want. We

can call it KQML if we want, but it is language- specific intraprocess communication so no

need to overregulate it. Router interface libraries communicate with router agents using adver-

tise/publish/subscribe (so-called declarations). Routers talk to each other using advertise/publish/subscribe,

maybe broadcast, for the exchange of declarations, and using packages for delivery to end-agents.

B.2 Agent-Based System Engineering (ABSE)

The ABSE project is a collaboration between the Stanford University Logic Group and Hewlett-

Packard Palo Alto Research Laboratories. The ABSE architecture is a network of application

agents (referred to simply as agents, below) connected through facilitator agents.

Agents and facilitators are linked together in what is often called a federation architecture. Figure

?? illustrates this architecture for the simple case in which there are just three machines, one

with three agents and two with two agents apiece. As suggested by the diagram, agents do not

communicate directly with each other. Instead, they communicate only with their local facilitators,

and facilitators communicate with each other. In effect, the agents form a "federation" in which they

surrender their communication autonomy to the facilitators; hence, the name of the architecture.

Messages from agents to facilitators may be directed or undirected. Undirected messages have

content but no addresses. It is the responsibility of the facilitators to route such messages to

agents able to handle them. In performing this task, facilitators can go beyond simple pattern

match - they can translate messages, they can decompose problems into subproblems, and they

can schedule the work on those subproblems. In some cases, this can be done interpretively (with

messages going through the facilitator); in other cases, it can be done in one-shot fashion (with

the facilitator setting up specialized links between individual agents and then stepping out of the
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Figure 8: The PACT architecture

picture).

To accomplish the above, facilitators handle the reserved KQML performatives forward, broker-one,

broker-all, and register. In addition, facilitators exploit the definitions of the reserved parame-

ters :content, :language, and :ontology to perform representation language translation. When

taken together, agents handle a wide variety of reserved KQML performatives, including evaluate,

ask-about, reply, deny, and generator.

B.3 Pale Alto Collaborative Testbed

The PACT experiments show how pre-existing engineering software systems can be combined to

constitute a distributed system of integrated design information and services. The PACT archi-

tecture encapsulates each component system with an information agent, which serves to bridge

the idiosynchrosies of access to that system's knowledge and abilities (see Figure 8). Information

agents use KQML as their agent communication language, with KIF as the exclusive representation

language. Information agents are connected as needed, in part through an ABSE post-office agent

(cf. Section ??).

The experiments involved four geographically distributed engineering teams, collaborating on sce-

narios of design, fabrication, and redesign of a robotic manipulator. Each of the four design

environments in PACT was used to model a different aspect of the manipulator (controller soft-

ware, rigid body dynamics, encoder circuitry, sensors, and power system) and to reason about it

from the standpoint of a different engineering discipline. Collaborative design tasks were performed

including dynamics model exchange between the controls agent and dynamics agent, fine-grained

cooperative distributed simulation exercising each aspect supported by the four tools, and finally

design modifications suggested by the simulation. Each team was supported by its own computa-

tional environment linked via the PACT framework [Singh and Genesereth][Genesereth92] over the
Internet.

The challenge in PACT was to take four existing systems, each already a specialized framework,

and to integrate them via a flexible, higher-level framework. Framework building requires com-

mitments from each party desiring participation in the shared environment to establish interface
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agreements and protocols of interaction. To drive the experiments with concrete goals, scenarios of

interoperation among the various concurrent engineering tools, initially thwarted by tool isolation,

were proposed. Next a series of interpersonal interactions were conducted among the developers of

the various tools to identify the necessary information that bridged tool perspectives and enabled

the execution of the driving design scenarios. Once the types of enabling knowledge had been

identified (components, connectivity, attribute features, time varying values, equational functional

models, etc.), agreements were reached on the form of the shareable knowledge. As a result of these

interactions, an implicit ontology was created reflecting of Hine agreements. Over the course of the

PACT experiments, the ontologies were explicitly encoded in KIF and Ontolingua Gruber92].After

the form and semantics of the knowledge content had been agreed upon, an KQML-like language

Agent Communication Language was specified to allow expressions of attitude toward knowledge

content such as belief, disbelief, and interest.

Each tool has been wrapped up as an information agent available as a service to other agents. Tool-

specific wrappers were constructed for each tool to translate into and out of the shared ontology

and to manage the tool's application programmer interface for reacting to requests and updates

expressed within the KQML-like Agent Communication Language.

PACT employs a rich suite of performatives, indicating the diversity of the PACT architecture.

Networking The PACT framework provides an infrastructure postal service to allow agents to

delegate all message delivery responsibilities. To utilize the postal service, individual agents

employ the register performative to make the postal service aware of its presence. The

postal service is capable of handling forward messages addressed to any registered agent.

Other message traffic is point-to-point between agents to reduce the overhead of a centralized

bottleneck (e.g. during a distributed simulation).

Notification The PACT experiments exercised concurrent engineering design scenarios. Embod-

ied within the concept of concurrent engineering environment is the tenet that all affected

parties of recent design changes will be notified of the change so they may assess the impact.

Notification is triggered by detection of change in information of interest. The traditional

query oriented approach for requesting existing known information does not support notifi-

cation, since the interest is assumed to expire after the answer is returned. What is needed

is a performative whose semantics convey the monitoring nature of a notification request.

Consequently, heavy use is made of the subscribe performative to convey the conditions

triggering a notification. As a simple example of the utility of subscribe within PACT,

one agent (NextCut) posts a persistent interest in the type of motor applying torque to the

manipulator arms. This way if the motor changes, the consequences of the change in the
motor's features can be evaluated.

Facilitation PACT is currently building sophistication into the infrastructure to provide mecha-

nisms for locating registered agents with capabilities suited to fulfilling specific information

interests. This way an agent with an information need would allow the infrastructure to

broker the service request to agents who have stated capabilities matching the request. To

enable this process, service provider agents would be forced to advertise their capabilities via

the advertise performative. Followup to these advertisements occurs using the broker-one

and recommend-one performatives.

Generator, Multi-response To provide flexibility on the packaging of transmitted knowledge

and support a local tool's paradigm, provide a variety of mechanisms to specify the form of
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interesting information. (For architectures which cannot handle asynchrony, provide mecha-

nism to get all answers back at once, allow asynchronous incremental transmission for forward-

chaining agents, or support generators).

B.4 Information bus architecture (ala TIB)

(to be completed by Jay Weber)

based on publish & subscribe, advertising of label names (with a hierarchical naming scheme)

assumed a priori, clients subscribe to these names and servers publish. [Does TIB partition clients

and servers? No real reason to, except it does consolidate recipients of subscriptions.]
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C KQML APIs and Alternate Syntaxes

Architectures that use pre-existing message-passing platforms and agent implementations may find

it easier and/or more efficient to use an alternative to the list syntax described in this specification.

C.I

C.2

C.3

The ABSE Lisp API

The DRPI TCP/IP API

KQeMaiL

There have been implementations that use e-mail as a transport mechanism between agents.

Is is reasonable to construe the UNIX sendmail process as an agent that processes package perfor-
matives.

We have a mapping between package performatives and Internet e-mail messages.

C.4 CORBA dynamic invocation interface

The Common Object Request Broker Architecture is a new standard for distributed object-oriented

processes that has broad support from software/hardware vendors, standards organizations, and

potential users. The CORBA is a reasonable and effective platform for agent-oriented software as
well.

There is a simple mapping from the list syntax of this spec to the CORBA dynamic invocation
interface.
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D Future Work

This section notes some of the capabilities which are recognized as being needed or desired in

KQML and some thoughts on how they might be realized. Any material here is highly speculative.

It is included to provide the reader with an accurate vision of the complete language.


